Contents

OVEIVIRW ... 1
Noise Output Waveform.....................cccccoooooioeeeeeeeeeeeeeeee, 1
TimingG Trace...............ccccoooooooiiieeieeeeeeeeeee s 2
MyYFOrth Program.............................ooooeoeeeeeeeeeeeeeeeeeeeeeeee e, 3

PSR.doc i

Contents ii

14Aug06 rjn

32 Bit Pseudo Random Noise Generator

Overview

The following describes a pseudo random sequence generator program for a
Silicon Laboratories C8051F120 microprocessor (the Target) running at 98 MHz.
The generator was programmed in MyForth by Charles Shattuck.

Noise Output Waveform

Figure 1 below was captured from a Textronix TDS 2014 oscilloscope. It shows
the pseudo random output of the generator on Channel 1 and the loop timing
signal on Channel 3. The next section contains a better picture of the Channel 3
waveform.

The Channel 1 trace shows the voltage appearing on bit 6 of port 1. The
Channel 3 trace shows the voltage on bit 7 of port 1.

i Pos: 0,0005 MEASLIRE

CHT
Period
1524087

CH2 Off
Cyc RkS

CHY Off
Mane

CH2 Off
Mane

CH1 2004 b 2,50.u%

1d-pug-06 14:36

Figure 1. Pseudo Random Output (Channel 1)

PSR.doc Page 1 14Aug06rin

32 Bit Pseudo Random Noise Generator

Timing Trace

Figure 2 below shows the timing trace in more detail than Figure 1. Note that
the loop return and the toggling of the timing bit consume approximately 51
nanoseconds. A disassembly was checked against the instruction timing chart
for the C8051F120 and it was verified that the code used 5 cycles. At a clock
rate of 98 MHz, the timing is as expected.

The trace also shows that the instructions to implement the 32 bit shift register

and feedback takes approximately 454 nanoseconds to execute. Thus, noise is
output at 1.98 MHz.

P Pos: 144,005 MEASLIRE

CH2 Off
Coyc RS

CH4 Off
Mane

CH2 Off
Mane

CHT 200% b GO0Ms
14-aug-06 14:41

Figure 2. Timing Trace Detail (Channel 3)

PSR.doc Page 2 14Aug06rin

32 Bit Pseudo Random Noise Generator

MyForth Program

The following is a listing of the MyForth program, contained in files io.fs and
main.fs, to produce the waveforms shown in the previous sections. Note the
following:

1. MyForth uses color to improve readability. Comments are blue. Forth
definitions and macros (:m) are in red. Definitions in black use Gforth
(the Host Forth) to calculate direct cell addresses. There are only two
vocabularies, Forth and Target..The [Word searches Forth first, Target
second; the] Word searches Target first, Forth second.

2. Some crossbar settings in init-xbr are for another application (e.g., CS).

3. The SFR-f and SFR-0 Words set the 120’s page registers.

4. Special function register (e.g., XBR0 and POMDOUT) are defined
elsewhere, but you can get their addresses from the C8051F120 data
sheet.

5. Numbers to be put on the Target’s stack must be followed by the # W ord

6. The #! and #@ W ords store and fetch values to/from a register or direct
cell

7. Tis the top of stack, a is the indirect address register (R1) — RO is the
data stack pointer

8. 2* performs a multiply by two with carry (rlc)

A more detailed explanation of the PSR application is contained in the MyForth
Reference Manual, distributed with MyForth in the DOCS directory.

PSR.doc Page 3 14Aug06rin

32 Bit Pseudo Random Noise Generator

\io.fs
:init-xbr
SFR-f
$07 # XBRO #! \'i2¢c, SPI, UARTO.
$80 # XBR1 #! \/SYSCLK
$44 # XBR2 #! \ UART1, Weak Pullups, XBR enabled.

$14 # POMDOUT #! \ Push/Pull SCLK,MOSI

$ff # PAMDOUT #! \ Push/Pull /SYSCLK, all P1 are output.
$08 # P2MDOUT #! \CS on P2.3

SFR-0 ;

\ main.fs

:m outbit 6 .P1 m; \LED
:m clue 7 .P1 m; \ For timing

:m +clue clue set m; :m -clue clue clr m;
\ :m +clue m; :m -clue m;\ disappear.

cpuHERE constant sequence 4 cpuALLOT

\ XXX XXXXXXXX XXXXX XXX XXXXXXXX
\ADbit31 A bit18

\ A sequence A sequence+2

\ If all bits are clear, reseed with $aaaaaaaa.
: ?seed

sequence # a! $aa #

dup !+ dup !+ dup 1+ !;

PSR.doc Page 4

14Aug06rjn

32 Bit Pseudo Random Noise Generator

\ Shift once with feedback from bits 18 and 31.
‘m psr+clue
[sequence 1 +] #@ \ Get bit 18.
[2.T movbc 7 .T movcb]\ Move it to bit 7 of TOS.
sequence #@ xor \ xor bits 31 and 18.
2*" \ Move xored bit into carry.
outbit movcb
\ Shift xored bit into sequence.
[sequence 3 +] (#@) 2*' [sequence 3 +] (#!)
[sequence 2 +] (#@) 2*' [sequence 2 +] (#!)
[sequence 1 +] (#@) 2*' [sequence 1 +] (#!)
[sequence 0 +] (#@) 2*' [sequence 0 +] (#!)
drop -clue m;

\ View current shift register in hex.
:.psr cr
[sequence 0 +] #@ h.
[sequence 1 +] #@ h.
[sequence 2 +] #@ h.
[sequence 3 +] #@ h.
space
[sequence 0 +] #@ u.
[sequence 1 +] #@ u.
[sequence 2 +] #@ u.
[sequence 3 +] #@ u.
space
[sequence 1 +] #@
[sequence 2 +] #@ d.

\ Load a seed value in the shift register.
:psr!l(n1n2n3 n4 -) sequence #a! I+ 1+ 1+ | ;

\ Note that #@ and #! push and pop the data stack, but
\ (#@) and (#!) assume the top of stack is already free to be used, so
\ don't need to push or pop.

PSR.doc Page 5 14Aug06rin

32 Bit Pseudo Random Noise Generator

: Opsr 0 # dup dup dup psr! ?seed ;
:init Opsr 0 # 7 #for psr 7 #next ;
it 13 # 7 #for psr 7 #next .psr ;

:go init-xbr Opsr begin psr again

:~P1.6 6 .P1toggle;
:~P1.7 7 .P1toggle;

PSR.doc Page 6 14Aug06rin

