T

Programming - User Support

Applications

ISSN # 0748-9331

Issue Number 53 November / December 1991

The CPU280
Local Area Networks
An Arbitrary Waveform Generator
Real Computing
Zed Fest '91
Z-System Corner
Getting Started in Assembly Language
The NZCOM IOP
Z-Best Software

The Computer Corner

Now $4.” Stops The Clock
On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of
many popular GEnieS™ Service fea-
tures. For just $4.95 a month.
Choose from over 100 valuable serv-
ices including everything from elec-
tronic mail and stock closings to ex-
citing games and bulletin boards.
Nobody else gives you so much for
so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
‘multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just $6.00 per
non-prime hour for all baud rates
including 2400. That's less than
half of what some other services
charge. Plus with GEnie there's no

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors
of The Computer Journall Enter “M 710" to join
the FIG group and “M 685" to join the CP/M and

Z-System group.

We'll meet you there!

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-
ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.

2. Dial toll free 1-800-638-8369.
Upon connection, enter HHH.
3. At the U#=prompt,
XTX99486,GENIE then press
TURN

4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at
1-800-638-9636.

enter
RE-

e 3

JUST $4.95

Moneyback

Guarantee

Sign up now. If you're
not satisfied after using
GEnie for one month

Qe’ll refund your $4.95J

*Applies only in U.8. Mon.-Frl,, 6PM-8AM local time and all day Sat, Sun., and select holidays, Prime time hourly rates §18 up to 2400 baud. Some features subject to surcharge and may not be

avallable outside U.' , Prices and products listed as of Oct.1, 1080 subject to change.

. Telecommunications surcharges may apply. Guarantea (imited to one per customer and applies only to first

morth of use. GE Information Services, GEnie, 401 N. Washington Strest, Reckville, MD 20850, © 1891 General Elsctric Company.

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Matt Mercaldo
Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Socrates
Press, P.O. Box 12, S. Plainfield, NJ
07080. (908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1991
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription ratese Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate): $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.0. Box 12, S. Plainfield, NJ 07080,
telephone (908) 755-6186.

Registered Trademarks

It is easy to get in the habit of using company
tracemarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overiooked.

Apple II, Il+, lic, lle, Lisa, Macintosh, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder ii, Dos Disk; Plu*Perfect Systems. Clipper,
Nantucket; Nantucket, Inc. dBase, dBASE |I, dBASE Il
dBASE |l Plus, dBASE 1V; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro International. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International. HD64180;
Hitachi America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not spe-
cifically acknowledged in each occurrence.

Editor’s Desk Eeavessrrarsesertrentaareasatanenssanrrnnnnrie e 2
Reader-to-Readerccciiiimmiiieeeinienseneennreensersnnns 2
The CPU280 CeresssssersssieERessTIRRSINSNSeErEesTaREEaraneenantats 3
When 8 Bits Aren't Enough

By Tilmann Reh.

Local Area NetWOrksccccceveeemriveniisccccnennnnnnessencennnns 6
Broadband Cabling

By Wayne Sung.

An Arbitrary Waveform Generator cereeessnanr N

Using the Harris RTX2001A. Part Two
By Jan Hofland.

Real Computingcecuerueee . T 17

Mach, Desqview/X, RBOCs, C Sickness, HST Modems,
Metal and More on Minix
By Rick Rodman.

Zed Fest '91ccccvimineriicnniimnennecennse s snssnnes 20
Where Beer and BIOS Meet
By Lee Bradley with Commentary by David Cottrell.

Z-System COrnerocvveiiimniinnniennnennnsssesaenes 21

User Groups in Germany, Using the NZCOM Virtual
BIOS, More Programming for Compatibility
By Jay Sage.

Getting Started in Assembly Language 27

implementing Functions with Structured Programming
By A.E. Hawley.

The NZCOM IOPccccvvmrimiiinicisininesennnnnss s 31

A General-purpose IOP Loader Module
By Terry Hazen.

Z-Best Software rerettessassesssesssssessesssssenersnssssrennne 38

Spotlight on Gene Pizzetta
By Bill Tishey.

The Computer COrnerccoeevesierrinnssssnsisnennn,s 48
By Bill Kibler.

Editor’s Desk

By Chris McEwen

Don’t You Love Euphemisms?

These are lean times. You have heard that companies need
to do more with less. This is a euphemism for giving more
work to fewer people and aptly describes the office | occupy
during my “other life.” [spent the months of July through
October out of town, with just a few weeks interspersed here
and there..

This is both an explanation for my delay in getting this
issue to you and its smaller size. | had grown fond of the
sixty-four page format, enough so that [intend to return to it.
But for now, we must suffice at forty-eight pages. We can
hardly do more with fewer people; I am the entire
production staff! | am back now, and things are returning to

ded control applications as vending machines have never
been approached, what other markets has the Forth world
ignored?

There is an ongoing discussion over the Internet about
Forth’s saleability. Emotions run high over the value of ANSI
standards, the lack of function libraries and incompatibilities
between different Forth systems. Shucks, all this is meaning-
less drivel if no one calls the client!

Other Worlds

I have mentioned the Internet, Fidonet, GEnie and other
forms of digital telecommuncations several times over the

normal — or what passes for such in
these parts..

No One Called the Client

I spent the last few months working
on everything but computers — at least
what the world thinks of as computers.
I spent a week at the National Auto-
matic Merchants’ Association trade
show in Chicago in early October.
That's vending machines, nickel-rob-
bers for the uninitiated. These days, the
machines will gladly relieve you of
your dollar bills. Five-spot robbers are
just around the corner.

In looking at the new wonders of
the vending machine world, 1 found
myself speaking to the vice president
of engineering of a leading manufac-
turer. Curiosity got the best of me and |
had to ask, “What processor do you
use to control these things?” The an-
swer was no surprise: Motorola
68HC11’s. And what do they program
in? “C, of course.”

Of course.

Here we have folks producing
equipment that is made-to-order for
Forth and they are using C. This is not
unusual. You hear it everyday. But the
reason Forth was not considered
floored me. A Forth vendor had never
approached them, and they had no
idea what it could offer.

If manufacturers of classic embed-

See Editor, page 26

b —

Reader-to-Reader

I have a suggestion. To help me lo-
cate the proper issue number when the
TCJ% are in a bookshelf, I've taken to
marking the issue number on the spine
in quite large numbers centered 3 1/2"
from the top. The orientation is side-
ways (if the issue was lying flat on the
table with the spine toward you, front
cover up, the issue number would be
right side up). The digits are about 3/
8" high and, since they wrap around
both sides of the spine, they visually
reduce to an apparent and still read-
able 3/16" high or so. You might con-
sider adding an issue number to your
cover in a similar format for easier ref-
erence.

T.H. Los Gatos, CA

Most magazines employ “perfect bind-
ing” where the pages are glued to a
backplane to accomplish what you want.
decided against this for two reasons: the

pages will not lay flat with the book open,
making it more difficult to copy listings
and the binding cost is much higher. TCJ
1s a hold-out in publishing source code,
and we run on a very tight budget, so per-
fect binding was ruled out.—Ed.

I am a long-distance member of
Morrow Atlanta Users Group and re-
ceive their Mor-Atlanta News, where |
read your introduction to TCJ. | am
not sure if your “free issue” offer will
extend to chaps like me sitting under
palm trees in the South Pacific! I have
enclosed my last remaining US $1.00
note to cover reply postage.

P.D., Rotorua New Zealand

I spent your dollar at the post office
mailing off your first copy for a trial sub-
scription. When you get the invoice, just
deduct the dollar you already sent.

See Reader, page 30

Letters to the editor and other readers are welcome. Submit to The Computer Journal,
Post Office Box 12, South Plainfield, NJ 07080-0012. Letters may also be electronically
submitted via Internet to “cmcewen@gnat.rent.com,” via GEnie™ to “TCI$" or to
Socrates Z-Node at (908) 754-9067. Submission implies persmission to publish your etter
unless otherwise stated. Letters may be edited as necessary.

The Computer Journal / #53

The CPU280

When 8 Bits Aren’t Enough

By Tilmann Reh

The History

When Zilog first introduced the Z800 MPU in their 1983/
84 data book, I was working with a homebrew Z80 system
based on ECB-bus EuroCards (a well-established standard
here in Europe these days). My system was running with the
usual 4 MHz clock, but my CP/M-Plus BIOS already had
some very nice advantages. For example, I had developed the
AutoFormat system, a technique which supports a wide vari-
ety of disk formats automatically. The basic principle is the
same as what MS-DOS uses: the disk contains a parameter
block which holds all information necessary to process it.
Another feature was the automatic installation of and adap-
tation to various peripherals. Since several some people
around here had similar machines, none of them had to con-
figure hardware parameters (as long as they didn’t need very
special things).

When | had a look at the ‘preliminary’ specifications of
the Z800, I began thinking about some performance improve-
ments for my system. So | waited for this chip to become
available. [was still waiting in 1985 when Hitachi’s HD
64180 suddenly appeared. This processor had much of what
the Z800 was supposed to offer, but it was actually available!
So I gave up waiting any longer and developed a 64180-
based single board computer. It had the 64180 MPU (with
both serial channels used), 32 KB EPROM and 512 KB
DRAM, a 765-type floppy controller for up to four drives,
and an ECB bus interface on a EuroCard. The clock fre-
quency was 9.216 MHz, which made an effective Z80 speed
of about 11 to 12 MHz. Since the ECB bus cannot handle
these frequencies, the bus clock was only half the CPU clock
(4.6 MHz), with timing signals stretched to meet standard
Z80 peripheral requirements. My new ‘CPU180" system did
the work of three of the older boards: the CPU, the memory,
and the floppy controller board.

The new single-board design brought the advantage of
direct access to all basic /0, so the BIOS could rely on these
facilities and use them. The CP/M-Plus implementation |
wrote for that system was more comfortable than the former
780 multi-board version. For example, it introduced
automatic disk exchange recognition. The high processor
performance was amazing compared to the 4 MHz Z80.

Then came the IBM-PCs. At that time CP/M was system-
atically forced to death here in Europe. The special German
computer syndrome became, “it has to be always the newest,
biggest, and fastest machine,” and the computer magazines
followed that slogan. So, after a while I was the only one
around here who was still active with CP/M. That was the
reason why the CPU180 was built exactly once: I was work-
ing with the prototype board, and no one else seemed to be
interested. (By the way, Wayne and Paul, if you had known
that back in 1985/86, you wouldn't have had to design the
YASBEC!)

At the end of 1988 Uwe Herczeg, another ‘lone CP/M
user’ in Germany, placed an ad in a major computer maga-
zine asking for other CP/M users to come forward. This
brought the remaining activists together. But most of them
were still using 4 or 6 MHz Z80 systems, often also based on
ECB-bus EuroCards, and some were very interested in my
CPU180 system. So we began thinking about a redesign of
that board with state-of-the-art technology. One of those new
friends suggested using the Z280 instead of the Z180. Z280? 1
ordered the data sheet and what did I find but the late incar-
nation of the old Z800 idea. Unbelievable but true, the Z280
was really available! So we decided to use the Z280, for this
CPU has a far more powerful instruction set than the Z180.

The Hardware Design

Basics and Memory

As the hardware and software concepts of the CPU180
had proven themselves very well, all basic principles were
carried over to the CPU280 design. As it was with the
CPU180, the highest priority design rule was to get the
absolute maximum performance out of the MPU with the
absolute minimum circuit expense and parts cost. For the
printed circuit board that meant using a standard double-
sided PCB (no multi-layer) with normal wire thickness (0.25
mm) and no SMD parts at all. Just the good old sort of
computer boards: reliable and easy to maintain.

In order to get the full power of the Z280, it must be run
in the 16-bit Z-bus mode, with cache and burst-mode en-
abled, with no RAM wait states, and with the highest pos-
sible clock frequency (12.5 MHz). The

Tilmann Reh is an electronics engincer at the Center for Sensor Systems of the
University of Siegen, Germany. In addition, he owns a small company which
develops custom specific problem solutions, often using microcontrollers or
microprocessors. He has been active with CP/M since 1983, changed to CP/M-Plus
in 1985, and has developed a number of ECB-bus boards. Tilmann can be reached by
reqular mail at 'In der Grossenbach 46, W-5900 Siegen, Germany’ or by e-mail

(Internet/bitnet) at ‘tilmann.reh@hrz.uni-siegen.dbp.de’.

The Computer Journal / #53

on-board memory interface is 16 bits
wide.

Main memory is built with dynamic
RAM. There are eight sockets for 1 M-
bit or 4 M-bit chips (with 4 bit data
width). Chips must be used in groups
of four to fit the 16-bit data bus. So the
possible memory capacities are 512 KB

3

and 1, 2, or 4 MB. This directly accessible memory should be
enough for just about any circumstances. The standard con-
figuration is with eight 1 M-bit chips (1 MB total). To save
space and because of the availability of exactly pin-compat-
ible 1 and 4 M-bit memory chips, ZIP-cased RAM is used.

Having had very good experience with synchronous
DRAM timing (the CPU180 memory worked absolutely
error-free for many years), I built a fully synchronous timing
chain for the DRAMs again. This uses an HCT175 as a four-
bit shift register and a GAL (gate array logic) containing the
CAS decoding and selection logic. The DRAM interface also
supports the processor’s burst mode, using a GAL to sweep
the lowest address bits during the burst (we can’t use nibble-
mode RAM’s, as these are not available with 4-bit width!).
The RAM timing is designed to meet all specifications of the
2280 at 125 MHz and RAMs with 100 ns access time.
However, as the prices for 100 ns and 80 ns types are
identical, we normally take the latter for safety.

Since the memory interface is far too fast for the ECB bus,
external memory is not supported. Additional reasons for
this decision were the data bus width (16 bit vs. 8) and the
different timing and status signals (Z-bus vs. Z80). Support
for external memory with burst-mode is absolutely impos-
sible, as the ECB bus doesn’t have strobing signals which
could do that job. Interfacing the fast 16-bit internal data bus
to the slow 8-bit ECB bus would require a large amount of
circuitry, and that would violate our main design rule. So, if
someone really needs more than 4 MB RAM, please connect
an external [/O-accessed RAM-disk via ECB (DMA support
is no problem).

The boot software is placed in two 27C256 or 27C512
EPROMSs, so the boot capacity is 64 KB or 128 KB. For easy
handling, ordinary 28-pin DIP sockets carry the EPROMs. As
this memory usually is needed only during boot-up, burst-
mode is not supported, and to accommodate slower memory
chips up to three wait states may be added.

The Z280 is able to use different memory timings when
accessing the lower or upper half of its 16 MB address space.
The EPROM is decoded into the lower half (8 MB, what a
waste!) and the RAM into the upper half. This way, it is
possible to use the RAM with zero wait-states and burst
mode while the EPROM uses up to three wait-states and
doesn’t support burst mode. Mapping any desired memory
configuration to the CPU’s logical 64k address space is done
with the PMMU (Paged Memory Managing Unit) internal to
the Z280.

I/O Basics and Bus Interface

In order to take advantage of widely available Z80 periph-
erals, the ECB bus clock and corresponding timing signals
really should not exceed 6 MHz. As the CPU clock frequency
is 12.288 MHz (for easy baud rate generation, it should be an
integer multiple of 2.4576 MHz), it is convenient to use half
the CPU clock frequency. This results in a bus clock of 6.144
MHz, which requires Z80B or Z80-6 components. With the
internal wait-state generator of the Z280 programmed to in-
sert four wait-states every 1/0 transaction (the maximum
value), the duration of the 1/0 cycles exactly matches the
divided clock. The clock divider is implemented by a single
flip-flop (HCT74) and is reset at the beginning of each trans-
fer to produce the correct phase relationship between bus
clock and timing signals. Since the Z-bus control and timing
signals cannot be used for the ECB bus, they are converted

into the appropriate Z80-type signals with a GAL.

Since the external peripherals use Z80-type vectored
interrupts, the bus interface must be able to generate the
correct interrupt acknowledge and RETI timings. Interrupt-
acknowledge is treated as an /O transaction and stretched
by the Z280, but the RETI instruction consists of two memory
cycles, which are too fast for the peripherals (besides the fact
that the memory control signals do not appear on the ECB
bus). Last but not least, the Z280 has a new interrupt mode
(mode 3) which uses another return instruction (RETIL). So a
slow RETI timing can be simulated using special accesses to
on-board 1/0 locations, with a GAL generating the correct
signals for the ECB bus. This way, vectored external
interrupts are supported, although the clock speeds are very
different.

The Z280 supports 24-bit I/O addresses as opposed to the
8/16-bit addresses of the Z80. The upper eight /O address
bits are accessed via the ‘1/0 Page Register’ within the MPU.
For full access to the 256 1/0 addresses which are specified
for the ECB bus, the bus interface is decoded to have an 1/0
page of its own. Another page is used for the on-board 1/0,
and two pages are reserved for the internal 1/0 registers of
the Z280. Decoding of the 1/O pages and addresses is done
within GALs.

Internal and On-Board 1/O

The 7280 comes with a serial interface (UART), three 16-
bit counter/timer circuits, and four DMA channels on-chip.
To avoid an external baud rate generator for the UART, one
of the timers is used. The 12.288 MHz clock allows standard
baud rates up to 38400 to be generated. Higher, but non-
standard, baud rates are also possible.

The internal UART is completed with two handshake sig-
nals which are not supplied by the MPU. A second serial
interface is provided by a Twenty-Pin-UART (TPUART)
COMB8I1C17 by SMC (it includes its own on-chip baud rate
generator). Both interfaces are buffered and shifted to RS-
232C levels with a 5V-only line driver and receiver, the
LT1134.

The CPU280 contains a real-time-clock (RTC) with 50
bytes of nonvolatile RAM, the Dallas DS 1287. Since this part
already contains the lithium battery, no external circuitry is
required. The RTC is able to generate interrupts at a specified
date and/or time (alarm) or periodically. The NVRAM is
ideal for storing configuration parameters.

Floppy disk I/O is handled by a WD/SMC 37C65 floppy
disk controller (FDC). This neat chip, cased in a 44-pin PLCC,
contains the complete controller. Just connect the CPU bus to
some pins and the disk drives to some other (and don’t
forget the quartz crystal), and everything is running. Floppy-
related data transfer may be handled by one of the Z280’s
DMA channels.

Simple TTL chips (HCT367, HCT259) are used to imple-
ment one 6-bit input port and one 8-bit output port. One bit
of each port is used for the handshake signals for the first RS-
232C interface. The other outputs drive some FDC control
lines and three LED'’s for status display. Some of the inputs
are connected to jumpers so that they can be used for con-
figuration purposes.

There are four 16V8 type GALs on the CPU280 board.
They contain memory address and CPU state decoding, 1/0
decoding, RAM timing and CAS decoding, and some ‘glue’

logic. Since nearly all signals are processed with only one

The Computer Journal / #53

logic stage, the standard ‘slow’ 25 ns GALs are fast enough.

The entire CPU280 circuit is designed using CMOS tech-
nology. The internal logic is made with the 74HCT series,
which is fast enough for nearly every signal. The bus inter-
face and one timing-critical function in the DRAM interface
use 74ACT chips. All LSI also are CMOS, and the GALs
should be taken from the ‘Q’ series (quarter-power). As a
result, the complete CPU280 board—fully operating at maxi-
mum clock speed—draws only about 350 mA from a single
5V power supply. No other voltages are required. The 32
chips nearly exactly fill the board space of the EuroCard,
with just enough space left to avoid a multilayer PCB. (Hey,
Wayne and Paul, why did you need SMD for just 23 chips?)

As with every good single-boarder, you just need to con-
nect a power supply, at least one disk drive of any kind and
size, and a terminal to complete the CP/M-Plus workstation.
However, by connecting the CPU280 to a standard ECB
backplane, you are free to use nearly any available ECB 1/0
board.

The Software

The best hardware doesn’t produce anything without the
right software. With this in mind, [adapted my CPU180
BIOS to the CPU280, now using the powerful Z280 instruc-
tion set, of course. As with the circuit design, the basic prin-
ciples and structures of the BIOS were taken directly from the
CPU180. However, | completely redefined and enhanced the
AutoFormat system and added a menu-driven hardware
configuration program to the boot loader (this was impos-
sible with the CPU180, as it had no NVRAM). Of course,
some further improvements were made based on the experi-
ence of four years of CPU180 operation.

Normally, the complete system (boot loader, CCP, BDOS,
and BIOS) is booted directly out of the EPROM. As a result,
you can boot up your machine in two seconds without any
noise or mechanical action. (For testing new system versions,
of course, booting from disk is also possible by pressing a
button during RAM-test.)

With all functional enhancements fully compliant with
CP/M-Plus definitions, all CP/M-Plus and most CP/M-2.2
software can be run on the CPU280 without any problems.
By the way, the operating system runs in the Z280's system
mode, while all user programs run in user mode. This is
done mainly to achieve easy bank switching (which the
MMU does automatically in this case), but it also increases
system security. Unfortunately, CP/M-Plus must have the
BIOS entry vector and some data structures in common
memory, so you cannot absolutely prevent user programs
from damaging the system software. But since we don't have
any better (and still compatible!) operating system, we have
to live with that fact.

The Power

What is the real performance of a Z280 running with ev-
ery booster switched on? The answer, unfortunately, is not as
clear as you would probably like it to be. First, the Z280 is a
pipelined CPU. So you really can’t say how many clock
cycles any instruction will take; it depends on the last few
previous instructions. In addition, some instructions (jumps
and calls, for example) flush the pipeline and thus are rela-
tively ‘slow’. Second, effective CPU speed depends on the
‘hit ratio’ of the cache controller. Small loops will run much
faster than ‘spaghetti code’. Third, the 16-bit arithmetic unit
of the Z280 (opposed to the 4-bit one of the Z80) processes

The Computer Journal / #53

indexing and math operations with greater speed gain than
with other instruction types. So the more a program makes
use of these instructions, the greater the effective speed.

Although it is impossible to specify exactly the power of
the Z280, you can say that with normal 8080 or Z80 software
it will have the power of a Z80 running at 16 to 20 MHz. Of
course, using the new instructions (there are more than 600!)
further increases the performance (while loosing 280 com-
patibility, of course). As the Z280 is used more and more, |
hope we will soon see the first real Z280 programs or the first
real Z280 operating system (which could could get rid of the
annoying 62 KB TPA limit of CP/M-Plus...).

The Development History

After the first version of the CPU280 ran stably in March,
1990, I made a redesign of the PCB layout with slight changes
in parts of the circuit. In June, 1990, I ordered the first run of
PCBs, and in November, 1990, | sent them along with all
semiconductors and special parts to about 25 people here in
Germany. A few other people around the world got a PCB
without the part set. | had to wait until November because
that was the time when the 12.5 MHz version of the Z280
became available, and we didn’t want to take the slower ver-
sion first and upgrade a few months later. As of early 1991,
many of the machines were running very well, as far as |
have been informed by the users. The CPU280 has proved
itself to be very fast and very reliable. Our ‘PD and ZCPR
Man’, Helmut Jungkunz, likes the machine for its flexible
method of processing different disk formats; that’s why he
uses it for nearly all disk distribution he has to do. Of course,
he likes the raw power, too.

But the CPU280 is not our only project here in Germany.
In a future column I would like to introduce my next board,
an IDE controller which connects standard (PC) AT-Bus
harddisks to any ECB-bus based CP/M system. The board
also contains an active termination of all bus signals, a Cen-
tronics printer interface, a four-LED power monitor, and two
system control buttons for reset and NMI (which, with the
CPU280, forces a warm system reboot). This board nicely
matches the CPU280 and allows one to build a really high
power CP/M workstation.

A friend of mine is developing an LCD terminal. Together
with a low-power Z180 single-boarder (based on my
CPU180) it makes a powerful CP/M-Plus laptop! My newest
project, which is coming along very well, is a high-perform-
ance CRT terminal for text and graphics at an unbeatable
price. Wait and see! Needless to say, all three of these boards
are EuroCard size. My friends and I look forward to describ-
ing these projects in future issues of TCJ.

How to Get a CPU280

Some of you may be wondering how you can get a
CPU280 of your own. Well, overseas shipment costs would
be too high for sending complete kits as we did here in Ger-
many. I think the easiest way to make the CPU280 available
in the USA (and elsewhere outside Germany) is for a local
dealer to provide my PCB together with locally obtained
components. For the US market, who could do that job better
than Sage Microsystems East? So, if you are interested in the
board, the semiconductors, or both, please contact Jay Sage.
Kits will include a disk with the complete system software, a
hardware manual describing the circuit details, and a brief
software description (I still haven't found the time to com-
plete a real software manual).@

Local Area Networks

Broadband Cabling

By Wayne Sung

Ethernet, along with other ‘local” area networks (or as the
British prefer, ‘small’ area networks), seldom stay small.
When people start realizing the benefits available from being
connected to a network, they will quickly want to join.

An Ethernet can cover quite a lot of area using only base-
band coax, but there are several drawbacks in trying to ex-
tend coax beyond one building. The biggest problem is with
ground differences among buildings. Another problem is
that the coax does not withstand well the stresses required
for long pulls in conduit.

An Alternative to Coax
There are a number of ways to solve these problems. One
of these involves the use of broadband cable, that is to say

Dual Cable
tap tap
T 1 l |
1 f2
‘Head End | F_=F +offset [f2+0 fl +0
A B
; — |
tap tap

cable television technology. This type of system often already
exists on campuses and works quite well for extending Eth-
ernets.

One would normally think of a broadband cable as some-
thing that only delivers services one way, which is the case in
cable television. Data services generally need two directions.
How would we maodify an existing cable system to carry data
services?

The most straightforward way would be to add another
cable. This way each cable would send signals in one direc-
tion only. There would be a place

Let's look at two modems made to constitute a point-to-
point circuit. Although the two are shown adjacent in the
figure, they could literally be miles apart. The only require-
ments are that modem A generate a signal on frequency f1
and modem B generate one at {2. Modem A would receive at
f2, and modem B at f1. The offset is generally zero in this
case. These frequencies can be chosen at random, but in prac-
tice will correspond to television channel frequencies. This
allows the best fit if this cable is to carry multiple services.

A double cable system is simple enough, but the expense
of installing the second cable is quite high. In fact, in most
cases it will be less expensive to modify the first cable to
make it bi-directional. This is where broadband seems like
magic sometimes, and this is the process | want to explain
more fully here.

Splitting the Bandwidth

Consider that a broadband cable can handle a rather large
frequency range, typically in the hundreds of megahertz. We
can divide this frequency range in half, so that one band is
used for each direction. If we take a piece of coax (up to
several thousand feet long) and put a number of signals into
the coax they will stay distinct.

A piece of wire is basically passive, and so will not cause
the signals to interfere with each other. Although every sig-
nal exists everywhere along the wire, this is of no concern.
We need one more item to make this scheme work. This is
called a translator.

A translator takes an input signal and changes its fre-
quency by some amount. This is exactly the case where a
television station broadcasts on a certain channel but on cable
itis in a different channel. There are two common translation
amounts for data work, 156.25 MHz (called mid-split) and
192.25 MHz (called high-split).

Using a mid-split case, and returning to the modem ex-
ample, modem A will transmit at f1 into the coax. The trans-
lator will receive this, and change it to f1 + 156.25 MHz.
Similarly modem B’s signal will be changed to f2 + 156.25
MHz. Thus A will now have to receive {2 + 156.25 MHz and
B will have to receive {1 + 156.25 MHz.

A complication arises when the cable must be extended
over much larger distances. There is loss in the cable, so in a
very long cable signals will start to weaken. It is simple

where some electronic equipment
would receive the signals from one
cable, process them, and send them
down the other cable. This place is
called a “head end’, and in the simplest

case would be an amplifier. meet their specs.

Wayne Sung has been working with microprocessor hardware and software for
over ten years. His job involves pushing the limits of networking hardware in
attempting to gain as much performance as possible. In the last three years he has
developed the Gag-a-matic series of testers, which are meant to see if manufacturers

The Computer Journal / #53

enough to install amplifiers to bring the signals back up, but
amplifiers normally work in one direction only.

Fortunately, since we have already divided the frequency
range, we can use low- and high-pass filters to split the sig-
nals and have two amplifiers, one for each direction. One
reason it is cheaper to modify a cable system for bi-direc-
tional use is that most likely there is already space for the
filters and additional amplifiers. The amplifier enclosures are
designed for bi-directional use, and adding the second direc-
tion is fairly simple.

Typically the low frequency band flows toward the head
end and the high frequency band away from it. This is not an
absolute requirement, but in those cases where a cable
already exists to provide one-way services these will be in the
high range. For example, if there are television channels, they
will start at channel 2 (54 MHz). Thus it becomes natural to
design the two-way system so as not to have to disturb
existing services.

In fact, there is a low-split system where all television
channels are kept intact. However, this leaves very little
space for one direction. Also, at lower frequencies it is more
difficult to get good performance from wide-bandwidth
devices (which we will need when we start extending LANS).

To add devices, we install taps along the main trunk.
These taps isolate devices from each other. Remember that all

Single Cable 2-Way Amplifier

S 1 high high | 2 ¢

F|3 °© pass amplifier pass ‘lj ©

M filter fiter | . T
«— i b | b(_
— 1 | | t 0|

tn ow . ow tn

c e pass amplifier pass e e

filter filter
ror ror
to head end to line

devices are to send toward the head end and receive from it.
Individual devices do not need to hear each other, and in fact
do not benefit from being able to do so.

RF circuits are easily affected by other circuits operating at
nearby frequencies, o it pays to keep them isolated. In prac-
tice, each modem output will be isolated from the trunk by
10 dB or more, providing 20 dB of isolation from one modem
to another. Taps are available with multiple branches per
unit.

Note that splitters and taps are not the same. A splitter is
meant to divide the total incoming signal several ways
equally. A tap provides minimal loss in the through direction
and a higher loss in the branch. Thus a two way splitter has
at least 3 dB loss from the input to each output whereas the
through direction of a tap should have less than 1.5 dB loss.

If a splitter gets used instead of a tap, the trunk level will
suffer needlessly. This extra loss then sometimes gets (incor-
rectly) compensated for by reducing the values of otherwise
correctly installed taps. Or, the outputs of modems have to
be run at maximum to get enough working signal. This
means that normal gain changes over temperature might
cause intermittent operation.

Since the two frequency bands are handled separately, we

The Computer Journal / #53

can set the receive levels on the trunk fairly high so that we
can have some isolation on the receive side as well. It is also
common to have 10 - 20 dB of receive isolation, but again this
factor is often compromised due to low levels in the trunk.
With digital signals, there is a lot of leeway and many

Single Cable

tap tap

f1 f2
Head End | F_=F + offset |f2+0 fl+0
A B

times the system works despite poor practices. If there is
video being carried, though, the effects will be a lot more
obvious.

With proper engineering, a broadband system can do a
very good job of data distribution. For the most part, it does
take some vigilance to keep one running well. Even tempera-
ture differences from winter to summer can cause problems.
Still, one good technician can keep a fairly large broadband
system running smoothly (until vacation time).

Why Not Fiber Optics?

Given that the cost of fiber optic systems is declining, why
bother with broadband at all? If we are talking about a totally
new installation, this is a compelling argument. However,
although fiber solves the ground difference problem nicely
(since it does not conduct), it is much more difficult to carry
multiple services on fiber.

Individual services, particularly very high bit rate services,

TAP
— —y lowloss ‘through’
direction
— higher
loss tap
SPLITTER
—>
— equal loss on
- both outputs
COMBINER
—
—» combiner and spliftter
= are the same thing

are ideal for fiber. However, frequency multiplexing is much
more difficult (what you would be multiplexing is the color
of light). Telephone companies are already using fiber optic
systems carrying gigabits per second, but these are point-to-
point.

In a broadband system, any service can be tapped at any
point using a device which costs only a few dollars. The
same mechanism does not exist (yet?) for fiber. An ideal situ-
ation, perhaps, would be to use fiber between buildings and

‘broadband inside the buildings. It is possible to take a whole

broadband cable’s content and modulate it onto a fiber.

Getting Practical

So much for the general theory of broadband systems.
How do we use them to extend local area networks? There
are several different methods available.

The most direct way would be to design a system where
the transceiver becomes an rf device, being able to take the
baseband Ethernet signal and convert to and from an rf sig-
nal. A computer connected to this kind of transceiver would
not know it was not baseband in most cases.

One consideration needed is whether the signal
transmitted by the computer goes to the head end and back
before being received by this computer as a confirmation. If
the signal does make the round trip, this is a delay that the
computer is not expecting, because a normal transceiver has
no time delay between transmit and receive.

If the round-trip delay, which is of course related to the
size of the plant, exceeds a certain amount, the computer
might think that it is not able to generate a signal on the
cable, and not complete the transmission.

On the other hand, if the rf transceiver is made to echo the
transmitted signal to the computer, then there is no con-
firmation that the signal actually went onto the cable. With a
baseband system, inability to actually generate a carrier
should cause an error.

In either case, the total size of the plant will not greatly
exceed the size of a baseband plant, because the collision
timing windows don’t change. It is possible to build a
slightly larger plant because collision detect is done at the
head end, which allows some of the timing to be reallocated.

By the way, any method of transmitting Ethernet over two
paths has these considerations. This is true, for example, of

fiber optic and microwave systems.

One other disadvantage of the rf transceiver is the wide
bandwidth required in the rf spectrum. Since the signaling
rate is not changed, the rf side must still handle a 10 Mb/s
signal. This usually ends up requiring two to three TV chan-
nels (12 - 18 MHz) in each direction and that is a lot to ask
for.

One would normally want to be able to use the full size of
a broadband plant. To be able to do this, the Ethernet timing
window must be bypassed. This is often done by having the
rf transceiver receive the entire packet before sending it onto
the cable. Once the packet is in the transceiver, the timing
window is satisfied, and a different method can be used in
the cable.

This method is called a buffered repeater, although strictly
speaking a repeater operates in a bit-by-bit fashion rather
than by packets. Having the extra circuitry increases the cost,
but fortunately it is not necessary to have one of these for
each machine. A number of machines can be attached nor-
mally and then use one buffered repeater to leave the build-
ing.

It is then possible to change the signaling rate on the rf
side to lower spectrum requirements. Note that simply de-
creasing the signaling rate also extends the distance, although
this is not usually a good enough tradeoff.

To get a factor of 10 distance increase requires the same
factor decrease in speed, and a 1 Mb/s system would feel
significantly different from a 10 Mb/s system. Thus the rf
distance gain is usually obtained with a proprietary signaling
method, or at least one that is not based on CSMA /CD.

One possibility would be to use a token bus on the f side.
The transceiver would convert between the two formats. A
token bus normally is able to span large distances, because
access is not mediated using collisions. It happens that some
token bus systems actually have collision detect require-
ments, but only for the purpose of adding new stations.

Most of the time, the conversion from baseband to another
transmission medium is accompanied by some method to
separate traffic between machines on the same side of the
converter (local traffic) from traffic that occurs between ma-
chines in different locations (remote traffic). Two of these
methods are bridging and routing, to be more fully described
next time. @

E

Real/52, from page 19

The major improvements are supposed to be support for
larger disk partitions and Posix-compliant utilities.

As | mentioned once before, UC Berkeley is working to
remove AT&T code from their operating system. Later this
year, a BSD release—but not a complete operating system—
should be available from them for about $500.

Desqview/X

In August, Desqview /X should be released. This package
will be more than an X terminal on a PC; it will allow pro-
grams to be written to run on the PC using Xt and Motif. |
predict that this will be an earth-shaking product—the essen-
tial bridge between the workstation and the PC worlds. X
window has already overturned the mini and workstation
worlds. To have complete transparency of execution across a
network of heterogeneous machines, and software portabil-
ity, is an extremely compelling concept. And you don't lose
any of your old programs either.

0S5/2 2.0 should be available from IBM sometime in the
fall. This should be an amazing product as well. Supposedly
it will run Windows code, PM code, X window code, and
DOS code, all at the same time.

Next time
Wow, look at all the X’s. And | didn’t even mention X.400
or X.25. Next time I'm going to get away from all this grandi-
ose complexity and discuss Kotekan, a “small is beautiful”
operating system for the NS32 by Don Rowe. Meanwhile,
don’t trust anything with capital letters in the middle!@®

Where to write or call:
Home Control Concepts
9353-C Activity Road

San Diego, CA 92126
1-619-693-8887 or 1-800-CONTROL

The Computer Journal / #53

An Arbitrary Waveform Generator

Using the Harris RTX2001A

By Jan Hofland

[This article is second of a series on the building and programming of a waveform generator for mechanical structural testing.
The hardware, with schematics, was given in our last issue, where we also began discussion of the software. In this installment, we
continue with the software and Forth extensions. The series concludes in our next issue with the source code.—FEd.]

Commands
The following 16 specific commands have been imple-
mented:

command description
0 NOP no operation

1 fastSine set up to operate in fast sine mode. The next

value input is the frequency.

set up to operate in the accurate sine mode.

The next value input is the freguency.

set output amplitude, in millivolts, for

accurate sine output mode. The value following

this command is used as the output amplitude.

This value will be truncated to a multiple of

50 mV.

set up to output from buffer 0 in circular

buffer mode

set up to output from buffer 1 in circular

buffer mode

pingPong0 set up to output in ping pong mode starting
with buffer 0

pingPongl set up to output in ping pong mode starting
with buffer 1

N

accuSine

3 setAmpl

-

bufLoop0

w

bufLoopl

-

~

8 bufout0 set up to output from buffer 0 until it is
empty

9 bufoutl set up to output from buffer 1 until it is
empty

10 1dBuf used to select a buffer and load it with data

values. The next parameter must be the number
of values to be loaded, up to 2048, and the msb
set if it is for buffer 1. Then the data values
are input in sequence.

11 setOffset set the offset to be subtracted from the

sinewave value in accurate sinewave mode, in

100’s of microvolts The next value following

this command is the offset.

used to set the filter cutoff point. The next

value input is used for the filter cutoff,

range 1 to 40000 Hz.

13 getPeriod used to input the desired sample rate. The next
value input is used for the timer 0 period. If
in either sinewave operating mode, a check is
performed to readjust the phase increment to be
consistent with this period and the output

12 setFilt

frequency.

14 stop disable timer 0 interrupt to stop outputting
points

15 start enable the timer 0 interrupts to start

outputting data and then go into a loop to
repeatedly check the stale data flag in

register RX and update the value in scratchpad
RH if the stale data flag is set. Continue this
loop until the timer 0 interrupt is masked.

The execution vectors for each of the 16 commands are
contained in a table called parse that is used for command
execution.

Main Operating Loop

Here is the overall operating loop:

¢ main (—)
initialize
BEGIN begin an infinite loop
readFifo read a command from the input stream
doCmd perform the command
AGAIN ; go do it again

and here is the command execution word:

: doCmd (n—) perform the command represented by n
DUP cmdMsk AND make sure the upper 12 bits are zeroes
IF if the result of the logical AND is non-
DROP zero then it is an unrecognized command

.* Unrecognized Command " and discarded an error
message to the user
ELSE parse EXECUTE otherwise get an execution vector
THEN ; from command parse table and execute it.

Demonstration Software

Part of the software is for demonstrating some of the ca-
pabilities of the Waveform Generator. As designed, the
Waveform Generator expects its commands and arbitrary
data to be input from the input FIFO. Rather than design and
debug some hardware for controlling it in this manner I
chose to simulate the input FIFO in software. This has some
impact on the performance realized in the breadboard, but it
does demonstrate that the operating modes do, in fact, work
as designed. The basic scheme is to construct a queue of
commands and data exactly as if they were being input from
the input FIFO. | then use a revectored input routine to ac-
cept input from the software queue rather than the input
FIFO.

Input Stream Queue

Jan Hofland is employed with Hewlett Packard as a hardware design engineer,
working primarily on 68K based systems. His personal interests include woodwork-
ing, and playing with electronics for over 20 years. His current favorite system is
the F68HC11 from New Micros. Jan can be contacted at 2419 123rd Ave. SE,
Everett WA 98205 or by telephone (206) 334-0738 during the evenings.

The Computer Journal / #53

A 512 word input queue is con-
structed using the word buildCQ. This
queue is called cmdQ. It is used for
setting up the various demonstrations.
The way it gets used is to load it with

the sequence of command codes each followed by the re-
quired parameter, if any. The last command entered is the
start command. Then the queue end pointer and tail pointer
are adjusted to conform with the actual size of the command
queue.

Demonstration Sequences
There are 6 sequences implemented:

demoCircsq Implements a 1 Khz square wave using circular
buffer mode and a 40 Khz filter cutoff, The
square wave amplitude is a nominal -1V to +1V.
demoFeine20 Implements a 20 Khz sinewave using fast sine
mode and a filter cutoff of 20 Khz.
demoFsinel Implements a 1 Khz sinewave using fast sine
mode and a filter cutoff of 1 Khz.
demoAsinel Implements a 1 Khz sinewave using the accurate
sine mode with a 1 volt RMS amplitude, filter
cutoff of 1 Khz and an offset of 90 millivolts.
demoPp Uses the ping pong output mode to output a half
asine of 1 Khz, pause for 500 microseconds,
output another half sine at half amplitude,
pause for another 500 microseconds, and then
output a full cycle of 2 Khz sine. Then stop.
There isn’t anything particularly useful about
this waveform choice. It just shows some of the
versatility in output modes.

demoOnce Uses the once out mode to output one cycle of a
100 Hz sine that is linearly attenuated to
zero.

The Demonstration Loop

The word choose invokes a menu structure for the user to
choose which demo to be run and then it runs it. The main
operating loop for the demonstration is patterned after the
main high level word of the normal operating environment
with one difference. Rather than being an infinite loop, it is
repeated until the command queue is empty.

The word demo kicks it all off. Here is its definition:

: demo (-)
BEGIN
choose dVect EXECUTE choose a demo and fetch its
execution vector from the
table dVect and execute it.
This sets up the queue of
commands and parameters.
demoMain perform the commands in the
command queue
AGAIN ; and repeat it.

start up a demo

Note that four of the six demos do not have a terminating
condition. Stop them with the red pushbutton and reinvoke
demo to perform another one.

Conclusions

This model has clearly demonstrated the capability to con-
truct a waveform generator based on the RTX2001A. Much of
the hardware added can be incorporated into an ASIC, if so
desired. It should be a simple matter to include all of the
control logic described here into the ASIC. I would envision
keeping the input FIFO off-chip, as well as the DAC and the
reconstruction lowpass filter. Keeping the added data RAM
off-chip as well as increasing its size also makes sense. |
would make the DAC sample clock a dedicated hardware
timer, as well as the filter clock toggle ocntrol. Of course,
both of these timers would remain programmable.

If I were to take the next step in the design, I would
probably incorporate the following capabilities:

* Provide a second DAC for range control. This
would have to be a multiplying type DAC and would
provide dynamic amplitude scaling of all outputs. |
expect that a 12 bit DAC would be adequate for this
purpose.

* Provice a means of measuring the analog output
DC offset and correcting for that offset. It turns out that
as good as the switched capacitor filter is for waveform
reconstruction, it has rather poor DC offset characteris-
tics. Provision of an 8 bit DAC, paossibly on-chip, for
correcting for offsets makes sense. Another, though less
versatile, alternative would be an analog servo circuit
to servo the output toward an average zero level.

* Provide a means to bypass the filter to allow ran-
dom noise, wideband outputs. This kind of stimulus is
useful for some kinds of testing.

* Provide a user input for shutting down the output
and for gracefully ramping the output to zero when the
shutdown occurs.

Finally I must comment on the use of Forth for the
prototyping environment. In retrospect, I find it amazing that
I was able to write and debug all the software necessary to
control this hardware in the matter of about 7 weeks of spare
time effort. This is the first programming | have done in
anything other than an academic environment. The language
lends itself to rapidly start doing something related to the
application rather than spending all of your time learning
syntax or trying to relate some obscure command behavior to
what the hardware is supposed to do.@

Listing 1. GAL 26CV12 ABEL Source Code

MODULE mem_addr_decode
flag ‘-rq-’

TITLE ‘memory address RAM select and filter clock toggle
control for RTX2001 waveform generator
Jan Hofland

900404
900406
900415
“ t-—=ll-—=t
“ tclk |1 28| tclo
“ GAO |2 27| cntrNabLo

GAl |3 26| cntlatch
Ga2 | 25| cLoadLo
grd_wrLo |5 24| filtclk
gioLo |6 23| reset (input)
vee |7 22| resetlLo
MAlS |8 21| gnd
MAl8 |9 20| no_out20
MAl7 |10 19| URAMSEL
MAl6 |11 18| LRAMSEL
MA1S |12 17| uds (input)
MAl4 |13 16| 1lds (input)
MA13 |14 15/ MA12 (input)
LY — +
The purpose of this device is twofold. It decodes a memory
address to enable the external 8K x 16 RAM. This memory is

10

The Computer Journal / #53

U3 DEVICE

"

"

"

"

"

addressable as either bytes or words. The other purpose of
the device is to control the programmable counter used to

provide a clock source for the switched capacitor filter IC.

The filter requires a clock source 100 times its cutoff

frequency. For its highest bandwidths (up to 40 KHz), using

a timer interrupt would require interrupt servicing at a 4
MHz rate. Instead, what is done is to use a programmable

down counter to toggle £iltClk. The down counter is used for
divide down of up to 256. For higher divisions, an internal

timer in the RTX2001 is used to generate an interrupt, and
the £iltClk is toggled by writing to an ASIC bus address.

modified to change from a 22V10 to a 26V12 device to allow
full memory decoding of RAM contiguous with the evaluation
board MAP chip RAM.

device declaration
U05 DEVICE ‘P22Vi0‘;
'P26CVL2’;

pin declarations

inputs

telk pin 1; “8 MHz clock input

GA0,GAl,GA2 pin 2,3,4; * ASIC bus addresses

grd_wrLo pin 5; “ASIC bus read/write

gicLo pin 6; "ASIC bus external address active low
teLo pin 28; “counter terminal count active low

MAL1S,MA18,MA17 ,MAl6 pin 8,9,10,11; “memory bank address
MA15,MA14,MA13,MA12 pin 12,13,14,15; “upper 4 memory bits

uds, 1ds pin 17,16; “memory bus upper and lower data strobe
reset pin 23; “system reset

outputs
cntrNabLo pin 27; “enable filter clock counter active low
cntLatch pin 26; “ASIC bus write data to counter data

“in latch

cLoadLo pin 25; *“counter load control active low
£iltCik pin 24; “filter clock

URAMSEL,LRAMSEL pin 19,18; “upper and lower byte RABM select
resetLo pin 22; “active low reset output
no_out20 pin 20; “unused output

constant declarations

X,z = X.,.2.;

k = .K.; “high-low-high clock pulse

mAddr = [MA19,MA18,MA17,MA16,MA15,6MA14,MA13,MAL12];
“upper memory address

ghAddr = [GA2,GAl,GAO]; “ASIC bus address

pin attributes

cntLatch,cLoadLlo ISTYPE ‘com,neq’;
cntrNabLo, £filtClk ISTYPE ‘req,pos’;
URAMSEL, LRAMSEL ISTYPE ‘com,pos’;
resetLo ISTYPE ‘com,neq’;
EQUATIONS

”

"

o

"

disable outputs of I/0 pins used as inputs

reset.EN = 0;

MAl2.EN = 0;

uds . EN = 0;

1ds.EN = 0;

£iltClk.RE = reset; “filter clock asynchronous reset
tresetlo = reset;

counter data latch control

tcntlatch = (gAddr == 6) & tgrd wrlo & !giolLo & ltclk
& lreset;

counter load control asynchronous set-reset flip-flop

tcloadLo = reset “force low if reset active

1tclo & !tclk “set (low) during low half of
“clock if counter terminal count asserted

itcloadLo & itclk; “hold assertedduring low half
"of clock reset during high half of clock
“if reset isn’t asserted

external RAM selects

URBMSEL = ({mAddr == 5) # (mAddr == 6) # (mAddr == 7)

(mAddr == 8)) & uds;
IRAMSEL = ((mAddr == 5) # (mAddr == 6) # (mAddr == 7)
(mAddr == 8)) & 1lds;

cntrNabLo is a registered signal used to enable the external
filter clock down counter. It is set by writing to ASIC bus
address 5 and cleared by writing to external address 4. The
counter is enabled when cntrNablo is cleared. The data

written to these address is ’‘don’t care’.

STATE _DIAGRAM cntrNabLo

state 0: if ((gAddr == 5) & !grd_wrLo & !giolo)

then 1
else 0;

state 1: if (((gAddr == 4) & tgrd_wrLo & !giolo) # reset)

then O
else 1;

£iltClk is implemented as a toggle flip-flop. If cntrNabLo
is low, thenthe hardware counter is used to toggle filtClk.
Since cloadLo gets asserted whenever the counter reaches
terminal count, and the fact that cLoadLo changes the
counter control from count down to load, thereby deasserting
terminal count out, cloadLo is used for toggle control. If
cntrNabLo is high, then filtClk is toggled by writing to an
ASIC bus address. The data is a ‘don’t care’.

EQUATIONS

filtClk.EN = lreset;

STATE_DIAGRAM filtClk

state 0:

if (tentrNabLo & !cloadLo

#cntrNabLo & (gAddr == 7) & !grd wrlo & tgiolo)
then 1
else 0;

state 1: if (lentrNabLo & !cloadLo

#cntrNablo & (gAddr == 7) & lgrd _wrLo & tgiolo)
then 0
else 1;

TEST VECTORS ‘memory select’

TEST_VECTORS

{[mAddr,uds, 1ds]
t o, 0O
1I

-> [URAMSEL, LRAMSEL])

-=> [0, 01;

-> 1;

- 1:

1

1; “MAP chip RAM active
1;

1;

1;

1

.

1;

’

1i
1;
1;
1;
1i

’

o

[

N
=
o

W
~
[

-

[
(=]

-
-

o

o
o

-

-

-

A ;s

>

-

-

-
->

t
(
{
{
l
(
{
[
{
{
(
t
[
...>[
{
{
(
(
{
{
[
{
{
{
(

-
—>

-
-

1;
1;
1;
1;
1;
1:

i

->
>

o T - R B NI IR IR R SR AT)

-

->
->

{
(
{
[
(
[
(
!
(
{
{
{
{
[
{
(
(
[
{
{
(
[3

[64! =->
[128,

[255,

-2

OOOOOOO)—‘HOOP—‘HOOP—‘P—‘OOHHOOOO

>

e R R O P OOR OO HEOORR
B - HOORHOORRPOOKREROORRERRRERO
o e s et s e e e s s e it e e e e e e e e e ek e bt e
OOCOOOP—‘HOO)—'HDOP—‘HOOHP—'

‘filter clock control’
([tclk,gAddr,grd_wrlo,giolo,tclo,reset] —>
[entLatch,cLoadLo,cntrNapLo, f11tClk, resetLo])

[, 6,0, 0, x,11->¢(1, 0, 0, 2, 0]; “reset
{1, 6,0, 0, 1, 0) -> | 1, 1, 0, 0, 1 };
[o,6,0, 0,1, 01 ->[0,1,0,0,1]; “counter
“ latch enable
[i,6,0,0,1,0)1->[1,10,0,11;
[1,5,0,0,1,03)->711,120,0,11];
“32"[k, 5,0, 0, 1,01 ->[1,1,1,0,1];“set

T

he Computer Journal / #53

"

* cntrNabLo high
[k, 4, 0,0,1, 0] ->0(1,1,0,0,117]; "set
" cntrNabLe low again
f1, 90, 0,06,0, 03 -~>11,1,0, 0,1]; “counter at
“terminal count
{o,90,x,x,001->¢(120,0,0,11]; “counter
“load
[Ololxlxlll0]—>[110101011];
“37"r1,0, x,x,1, 03 ->101,1,0,1,173; “toggle
“filtClk
{(1,90,90,90,0,01->11,1,0,1, 1 }; “counter at
“terminal count
0,01 ->11,0,0,1, 1];” counter load
“40"[0, 0, x, x, 1, 0 } => [1,0, 0,1, 1]
[1,0,X,X,l,0]—>[1,1,0,0,1]

’
’

“toggle

“filtClk

{fk,5,0,0,1,071~->(1,1,1, 0, 1]; “set
“entrNabLo high
ri, o x,%x,1, 03] ->911,1,1,0,1]7;
“447(1, 7,0, 0, x, 0] ~>(1, x,1,0,117];

“program control toggles:

[X, 7, 0, 01 X, 0 1->101, x, i, 1,1 1i
“46"[kl 71 0, 0: x, 0] -> [11 x, 1, 0: 1 IE
[k,7,0,0 x,0)->(1,x,1,1,11};
“48"(k, 7,0, 0, x, 01 ->[1,x,1, 0,1];

END mem_addr_ decode

Listing 2. GAL 22CV10 Abel Source Code

MODULE asic_bus_control
" flag ‘-r4’

TITLE ‘ASIC bus address decode and ADC strobe control
for RTX2001 waveform generator
Jan Hofland
900404

“ telk {1 24| vee

" GAO |2 23| GDO tri-state

“ GAl {3 22| GD1 tri-state

serDatld

“ grd_wrLo |5 20| DACltch

” gioLo |6 19| Qd 1local state variable
" noUse7 |7 18| Qc local state variable
” noUse8 |8 17| @b local state variable
“ stroblo |9 16| Qa local state variable

" fifoMtLo |10 15| fifoRdLo
“ fifoFullo [11 14| fifoWrLo
" gnd |12 13| reset

" Fome e +

"

The purpose of this programmable device is to load a 16
bit shift register from the external ASIC bus and shift its
cutput into the serial DAC, and strobe the DAC LE (Latch
‘Enable) input after 18 data bits are shifted into the DAC.
Data is shifted in most significant bit first at an 8 MHz
rate. The last two bits are always zero. This device also
controls writing to the FIFO and reading from it. If the
FIFO is full, then writing is inhibited, and if it is
empty, then reading is inhibited. The two FIFO status bits
“ can be read on the lower two bits of the ASIC bus.

“device declaration
U8 DEVICE ‘P22V10’;

“pin declarations

7 inputs

telk pin 1; “8 MHz clock cut of RTX2001
GAO,GAl,GA2 pin 2,3,4; “ASIC bus register address
grd wrLo pin 5; “ASIC bus read/write

giolLo pin 6; “ASIC bus external access enable
noUse7,noUse8 pin 7,8; “unused inputs pulled up
strobLo pin 9; “external FIFO data write strobe

»

pulled low to request a write. Set
High after fifoWrLo goes low.
fifoWrLo then goes high again to
write data into FIFO. User must

” leave data valid at least 250 ns

“ after setting strobLo high.
fifoMtLo,fifoFullo pin 10,11; “FIFO status signals

»

»

"used for generation of DACltch

fifoRdLo pin 15; ”ASIC bus controlled FIFO read
“active low
fifoWrLo pin 14; “FIFO write signal active low

”“constant declarations
x,z,¢c,k = .X.,.Z2.,.C.,.K.;
gAddr = [GA2,GAl,GAD];
sCnt = [Qd,Qc,0b,Qa];

“ASIC bus register address
“shift register control variables

“pin attributes

GD1,GD0 ISTYPE ‘com,pos’;
Qd,Qc,0b,Qa ISTYPE ‘reg,pos’;
serDatLd ISTYPE ’‘com,pos’;
DACltch ISTYPE ‘com,pos’;
fifoRdLo ISTYPE ‘com,neqg’;
fifoWrLo ISTYPE ‘reqd,neq’;

STATE_DIAGRAM sCnt
“ a 16 state gray code counter is implemented. The idle state
is state 0. If the DAC shift register is loaded, the
counter will progress through 16 state to state 1000, set
the DACltch signal, and then reverse direction. When it
“ gets back to state 1010 it will then go to the idle state
” 0000. DACltch will get cleared 1/2 clock cycle later to
" strobe the serial data into the DAC.
state “b0000:

if (lreset & (gAdd

then "“b0001

else "b0000;
state "b0001:

if (!reset)

then “b0011

else "“b0000;
state "b0011l:

if (!reset)

then “b0010

else "b0000;
state “b0010:

if (lreset)

then “b0110

else "b0000;
state "b0110:

if (!lreset)

then "“b0111

else “b0000;
state "b0111:

if (!reset)

then “b0101

else “b0000;
state “b0101:

if (treset)

then "b0100

else “b0000;

-

”

I

== 0) & tgrd wrlo & lgioLo)

reset pin 13; “system reset inhibits FIFOread/write | state “b0100:
if (treset)
“outputs then “bl1100
GD1,GD0 pin 22,23; “ASICbusdata lines for reading else "“b0000;
“status state “b1100:
serDatld pin 21; ~shift register load control if (lreset)
DACltch pin 20; “DAC latch enable signal then “bl101
Qd,Qc,Qb,Qa pin 19,18,17,16; “counter state variables else "b0000;
12 The Computer Journal / #53

state "bl101:
if (lreset)
then "bllll
else "b0000;
state “bllll:
if (lreset)
then “b1110
else "b0000;
state "b1110:
if (!reset)
then "b1010
else "“b0000;
state "b1010:
if (ireset & !DACltch)
then "b1011
else "“b0000;
state “bl01l:
if (lreset & !DACltch)
then "b1001
else if (!reset & DACltch)
then "bl0l0
else "b0000;
state “b1001:
if (lreset & !DACltch)
then "“b1000
else if (!reset & DACltch)
then "bl01l
else “b0000;
state "bl000: “turn-around state
if (lreset)
then "b1001
else "b0000;

EQUATIONS
fifoWwrLo.RE = reset; “asynchronous reset of all flip-flops
serDatld = (gAddr == 0) & !grd wrlo & !gioLo;
DACltch.EN = lreset; »tri-state connectionto DAC if
“reset active
DACltch = (sCnt == 8) “set at turn-around state

DACltch & (tclk # (Qd & 1Qc)); “not reset condition

{fifoRdLo = (gAddr == 1) & grd_wrlLo & !giolo & ftclk &
fifoMtLo & !reset
1fifoRdLo & !tclk; “hold low if last read of
“fifo asserts fifoMtlo
tfifoWrlo := !reset & letrobLo & fifoFullo
lreset & 1stroblo & tfifoWrLo; " hold low if
writing last word in FIFO sets
» fifoFullo

GD1.EN = (gAddr == 3} & grd _wrLlo & !gioLo; “status read
~ tri-state enable

GD1 = 1fifoFullo;

GDO.EN = (gAddr == 3) & grd wrlo & !giolo; “status read
“ tri-state enable

GD0O = tfifoMtLo;

TEST_VECTORS ‘serial data control’
([tclk,gAddr,grd wrlo,giolo,reset] ->
[sCnt,serDatld,DACltch])
{0, x, x, x, 1] > 0, x, z J;

TEST VECTORS ‘FIFO control & status’

END asic_bus_control

e
o

o o
o o
o o
(=R =]
[
v Vv
—_—
o

-
c o

”“load shift register
“ when tclk 0 to 1

[, 0,0,0, 0] ->1011,1,01;
ti, x,x,1, 0] ->(10, 07
[kl x, X, 1l 0] ->» [31 Or 0];
[k, x, x,3, 0] ->102,0,01;
[kl X, X, 11 0] => [61 0« 0];
[k, x, x,1, 0] -=>[7, 0, 0 1;
Pk, x, x,1, 0] —=>[5,0, 01;
[k, x, x,1, 0] =>10[4,0,01];
[k, x, x,1, 0] > [12, 0, O };
[k, x, x, 1, 0] —=>1[13, 0, 0];
[k, x, x, 1, 0) -> (15, 0, o 1;
Ik, x, x,1, 01 ->1[14, 0, 0 };
[k, x, x, 1, 0] ->1([10, 0, O];
[k, x, x, 1, 0] -> ({11, 0, 0];
[k, x, x, 1,071 ~->1019,0,01];
{ k, x, x,1,0])->(8,0, 11
[k, x, x,1, 0] ->129,0, 1]; *“turn around
{ k, x, x,1, 0] ->1([11, 0, 1 };
[k, x, x, 1, 01 - (10, 0, 1 };
[k, x, x,1,0]1~->100,0,11};
{0, x, x,1,01->7(0,0,0]; “DACltch cleared

({telk,ghddr,grd_wrLo,gioLo,stroblo, fifoMtLo,
fifoFulLo,reset] -> [fifoRdLo,fifoWrLo,GD1,GD0})

{o,x,x,1,1, x,1, 1) -> {1, 1, z, z]; "reset

ro, x, x,1,1,90,1,01~->0[01,1, 2, 2 1;

{1, x x, 1, 1, 0,1, 0] -—>1(1,1,2, 21];

[k, x, x, 1,1, 0,1,01->1[1,1, 2, 2];

{k, x, x,1,0,0,1,0]1->11,0, 2, 2]; "“FIFO write

[k, x, x,1,1,0,1, 071->[1,1, 2z, z };

(1, x, x,1,1,1,1,01]->1{1, 1, z, z];

[kl X, X, l: Ol 11 1: 0] -> [lr OI 2, 2];

[k, x, x,1,1,1,1,01->11,1, 2, 2];

[kl X, X, ll 01 lr ll 0] -> [ll 0, z, z 1;

[, x, x,1,0,1,0,01]->(1, 0, z, z]; “FIFO full

[k, x,x,1,0,1,0,0]->¢[1, 0, z, 2z];

[kr X, X, 1! ll 1! OI 0] -> [11 l: 2, 2];

ri,1,1,90,1,1 0,0]->] 1, 1, 2, z); “FIFO read

{fo,1,1,0,1,1, 0, 0] ->] 0,1, z, 2 17

[, %, 1,06,1,1,1, 0] ~->(1, 1, z, z]

{1,1,1, 0,1, 1,1, 01} -> {1, 1, 2z, 2 };

o, 1,1,90,1,1,1,0]->¢[0, 1, z, z];

ro,1,1,90,1,90,1, 0} ->1[0,1, 2 2]; "empty
“again

[11 1! ll OI 1l 01 1r 0] -> [11 1/ 2, 2];

[, 1,1,0,1, 0,1, 0] ~->(1,1, 2, 2];

ro,1,1,90,1,0,1,0)->7[1,1,2, 2]; "no read

[i, 1,1,0,1,0,1,07]~->¢(1, 1, 2, 2 1;

ri,1,11,1,1,%90,1,°0])]->[1, 1, z, 2 1;

{1, 3 1,0,1,0,1,0)->(1,1, 0, 1]; "status
“read

[o,3, 1,0, 0,1, 0] ~>(1,1, 0, 1 }; “FIFO empty

fi1,3,1,1,1,1,1, 0] =>(1,1, 2z, z];

ri, 3,1,0,1,1,1,01-—>(1,1, 0, 01;

{o,31,01,1,1,0]—>1[1, 1,0, 0];

{1, 3,1,1,1,1,90,01-=>101,1,2z2 2];

{1, 3,1 0,1,1,0,0)->1[1, 1, 1, 0 }; “FIFO full

[o6,31,90,1,1,0, 0] ->] 1, 1,1, 07;

(1,3,1,1,1,1,90,0)~->711,1,z 2 Y;

“The best executive is the one who has
sense enough to pick good people to do
what he needs done, and self-restraint
enough to keep from meddling with them
while they do it.”

The Computer Journal / #53

“Most of us are broad-minded enough to
admit there are two sides to every
question — our own and the side no
intelligent, informed, sane and self-
respecting person could possibly hold.”

13

Glossary for Words Added to EBForth increment from the set frequency for
sinewave output.
Boot Code Glossary Cbuf> (addr — n) Fetch the next value from the queue
whose name is addr. No checking is
#Que (addr — n) Return the number of values in the done to see if the queue is empty.
queue whose name is addr. reading a Most useful for outputting from a
value from the data input source. circular buffer where the data output
Normally, this variable points to the sequence is repetitive.
hardware FIFO read routine. For circBuf (—) Circular buffer output mode. Fetch the
demonstration purposes, it points to next value from the current data
fetching values from the software buffer and load it into the RH
command queue. register to be output to the DAC.
>Chuf (n addr —) Insert n into the queue whose name is clearQ (addr —) Initialize the #values, the head
addr. pointer and the tail pointer for the
>Que (n addr — fflg) Store n into the gueue whose name queue specified by addr.
is addr and return a FALSE flag if the cntMsk (— OFFF) A constant. A mask used for setting
queue isn’t full. the number of data values input with
(n addr — n addr tflg) If the queue is full, the 1dBuf command.
return the value, the address, and a cntrDisabl (—) Disable the filter clock (hardware)
TRUE flag, indicating that there isn’t counter. This word writes to ASIC
any room in the queue. address 1C (hex) as a write only
>RH (n-) Write n to the RH register and clear pseudo register. For low values of
the stale data flag kept in the RX filter cutoff, the filter clock is
register. This flag gets set whenever controlled with timer 1 interrupts.
data is transferred from RH to the cntrEnabl (—) Enable the filter clock (hardware)
output DAC. counter.
accuPt (—n) Return the sine of the current value coshdj {—n) Return the cosine adjust value for the
of phase and delPhase scaled to a 50 current values of phase and delPhase.
mV increment and then the current Used in the accurate sine output mode.
offset is subtracted from it. Used to cutoff (— addr) A variable for the lowpass filter
get the output value in accurate sine setpoint.
mode . DAC! (n-) Write the 16 bit value to the DAC
accuSine (-) Accurate sinewave mode command. Sets shift register on the ASIC bus. Writes
up the correct mode, the next point to ASIC address 18 (hex).
execution vector, and the sinewave delPhase (— addr) A variable for incremental phase
frequency. interpolation. Used in accurate sine
bufLoopld (—) Circular buffer mode. Sets up to mode to keep track of the incremental
output data from data buffer 0 in sinewave phase between adjacent values
circular buffer mode. of phase.
bufLoopl (—) Circular buffer mode. Sets uwp to delPhaseInc (— addr A variable for adding to the
output data from data buffer 1 in incremental phase accumulator. This
circular buffer mode. value is added to delPhase for each
bufMax (— 2048) A constant. Corresponds to the size of new output calculation 1in accurate
the maximum data queue, in words. sine mode.
bufoutd (—) Output from buffer 0 wuntil it is div512 (nl —n2) Divide nl by 512 truncated toward 0
empty. (not floored). Used in calculation of
bufoutl (—) output from buffer 1 until it is the cosine adjust value in accurate
‘ empty. sine mode.
buildCQ (n —) Create a queue structure in code space doCmd (n-) Execute command n, where n is an index
of n words. A defining word. The name into the table of command execution
of the structure should follow vectors, parse. This word makes sure
buildCQ. Sets up and initializes the that the command input from the inmput
#values variable, the head pointer for stream (the input FIFO) is a valid
extracting values from the queue, the command and then executes it.
tail pointer for inserting values, and DOES> (- An immediate word to define the
the end pointer for determining when runtime behavior of a word created in
to loop back to the beginning, and it code space. Typically used for
allocates the necessary space to addressing or fetching values from a
contain n vlues. table. Uses _DOES.
buildDQ (n -) Create a queue structure in data space DQO (—addr) Start of data queue 0.
of n words. A defining word. The name Dol (—addr) Start of data queue 1,
of the queue should follow buildDQ; fastSine (—) Fast sinewave mode command. Sets up
e.g., 50 buildDQ fudd will build a the mode, the next output routine
queue named fudd that will hold 50 execution vector, and the sinewave
values. Sets up the #values variable, frequency for the fast sinewave output
the head, tail, and end pointers, and mode. Expects the next word in the
allocates space for n values. input stream to ©be the desired
calcFreq (-) Calculate the actual sinewave sinewave frequency.
frequency from the known values of fifof (—n) Read a value from the input FIFO on
timebase period and phase increment. the ASIC bus. Reads from ASIC address
Because of the quantized nature of 18 (hex).
these parameters, the actual output fifoFul? (— flg) Return a TRUE flag if the input FIFO
frequency may differ somewhat from the is full. Reads the input FIFO status
set frequency. bits from ASIC address 1B (hex) and
calelnt (nl n2 —) Calculate the required timebase period masks bit 1.
from the phase increment and sinewave fifoMT? (— flg) Return a TRUE flag if the input FIFQ
frequency. Also checks the period to is empty. Reads the input FIFO status
make sure that it is at least the mode bits from ASIC address 1B (hex) and
dependent minimum. masks bit 0.
calcPhaselnc (freq — |} Calculate the required phase filtCnt! (n —) Write an 8 bit value to the filter
14 The Computer Journal / #53

GOES>

(—)

getPeriod (—)

goAdr

(p—

initTimers (

initialize (

intSetup (—

1dBuf

main

maxBW

maxFreq

minBW

minIval

mode

(—_

(~ 40000)

(

(

-

mode — N)

addr)

1)

clock hardware counter load register

at ASIC address 1E {(hex). Only the
lower byte of n is used. The upper
byte is a don't care.

An immediate word to define the

runtime behavior of an array stored in
data space. Uses _DOES.

Get the sample rate from the input
stream and set the required timebase
period intoc the timer 0 load register.
A variable. Contains the execution
vector for the mode dependent output
update routine.

Initialize the timer clock sources to
the internal TCLK source and mask off
all three timer interrupts.
Initialization routine. Sets up the
default to fast sinewave output mode,
40 KHz lowpass filter cutoff, and data
buffer 0 as the current read buffer
and write buffer.

Load the interrupt vectors for the
timer 0 and timer 1 interrupt service
routines.

Buffer load command. Specifies which
buffer to put the data into, and how
many data points, followed by those
data points. Expects the next word in
the input stream to be the number of
data values to follow with the most
significant bit set if using buffer 1
or clear if using buffer 0. This is
followed by the data values to be put
into the data buffer.

The high level 1loop when
inputting commands from the input
FIFO. This command is an infinite loop
of reading a command from the input
stream and then execute that command.
A constant corresponding to the upper
limit for setting the lowpass filter
(in Hz).

A table of upper limits on sinewave
frequency dependent on output sinewave
mode .

A constant corresponding to the lower
limit of lowpass filter cutoff (in
Hz).

main

mode — n2)A table of sample rate minimum values.

newAccuPt (

newPhase (

newPt

nextPt

offset

onceOut

(

(

(

addr)

-)

addr)

Indexed by the operating mode. These
values are based on the amount of time
necessary to calculate or fetch the
next output value to be put into the
DAC and then respond to the timer 0
interrupt to output it. There isn’t
much time to do anything else.

A varible corresponding to one of five
defined output operating modes.

Load the sine of the current phase
into RH and clears the stale data flag
in RX when operating in accurate sine
mode. Also updates the phase variables
for the next point to be output.
Calculate the next phase and delPhase
for accurate sine mode output.

The timer 0 interrupt service routine.
Transfer the value in the RH register
to the DAC shift register and set the
stale data flag in RX.

Put the next sinewave point to be
output into the RH register and update
the phase variables for the next
output point when operating in fast
sinewave output mode.

A variable that is subtracted from the
scaled output value when operating in
accurate sinewave mode.

single buffer output mode. Output the
data in the current read buffer until
the buffer is empty and then stop.

parse (n — addr)
pbstop (-)

peeQue (addr — n)
phase (— addr)

phaseddj (nl — n2)

phaselnc (— addr)

pi/2 (— 200)

pingPong { —)

pingPongl (-)

pingPongl (—)

Que>

(addr — f££lg)
readPtr (— addr)
scale (— addr)

scaleTop (— 40)

setAmpl (—)

setBufSiz (addr n —~)Set the buffer at addr to a size of n

setCutoff (n —)

setFilt (—)

setFreq {(freq -)

setOffset (—)

{ addr — n tflg) Fetch the

A table of execution vectors for the

recognized commands input from the
input stream.
The NMI Interrupt Service Routine.

pPerforms an abort and outputs a
"Stopped” message when the pushbutton

input is sensed active. Used to
‘recover’' from an output mode that
doesn’t have an explicit stopping
condition, or to recover from a

software bug running away with the
machine. Wish I had this one early in
the development...

Return the top value from the queue
whose name is addr without changing
the read (head) pointer.

A variable used for the
accumulator in fast sinewave
accurate sinewave output modes.
Adjust phase point nl to be within one
cycle. Keeps the phase variable from
exceeding two pi radians (equivalent).
A variable for the phase increment to

phase
and

add to phase in fast sinewave and
accurate sinewave output modes to
determine the next sinewave point to
be output.

A constant correspending to the number
of points in one gquadrant of the
sinewave table.

Ping pong output mode. First output
data from the current data buffer
until it‘s empty and switch to the
other buffer and output data from it
until it is empty. Then stop
outputting.

Ping pong output mode starting from
buffer 0.

Ping pong output mode
buffer 1.

starting from

next value from the
queue at addr and return a TRUE flag
if the gueue wasn’t empty

or return a FALSE flag
queue is empty.

A variable. Contains the address of
the current data buffer to be read
from.

A variable used to scale the output
gsinewave in increments of 50 mV when
operating in accurate sinewave output
mode .

A constant.
scale.

Set output amplitude command. Used if
operating in accurate sinewave output
mode. Expects the next value in the
input stream to be an output amplitude
expressed in millivolts RMS. Quantizes
the input to be a multiple of 50 mV
and stores it in the scale variable.

if the

The maximum value for

words. This routine is typically used
when using a data or command buffer
size different than the default
maximum size.

Set up the lowpass filter for a cutoff
of n Hz. Also determines if the
hardware counter or timer 1 will be
used for controlling the filter clock.
Set lowpass filter cutoff command.
Expects the next value in the input
stream to be the filter cutoff in Hz.,
range 1 to 40000.

Set the sinewave frequency and set the
sample rate corresponding to that
frequency and the output mode.

Set output offset command. Used if in
accurate sinewave output mode, Expects
the next value in the input stream to

The Computer Journal / #53

15

be the offset in 100‘'s of microvolts. choose {(—n) Select one of the 6 demos or quit.
No scaling or bounds checking is cmdQ () The start of a circular buffer
performed on this value. The wvalue structure in code space for simulating
input is subtracted from the scaled the hardware command FIFO. This
value of sinewave output. command queue is preloaded with the
setPeriod (period —)Set the timebase sample rate (timer 0 command codes and associated
load register value). Makes sure that parameters and data. Then the command
it is at least the mode dependent execution software is revectored to
minimum value. If in a sinewave output fetch words from the command queue
mode then it also readjusts the phase instead of the input FIFO.
increments to be consistent with the cmdOMT? (— flg) Return a TRUE flag if the command
desired output frequency and the queue is empty.
desired sample rate. cqgMax (— 512) A constant. Maximum size of the
sine (~n) An 800 peint table of sine values command queue, in words.
scaled to 2 VRMS. Used in both fast dMenu (~) Display the menu for selecting a
sinewave and accurate sinewave output demonstration.
modes. In fast sinewave mode the dvect (nl — n2) Return the nlst demonstration
output values are taken directly from execution vector. The value nl comes
this table. In the accurate sinewave from the word choose.
mode interpoclation is performed for demo (=) The high level word for initiating the
values in between the table values. demonstration.
This table is in code space. demoAsinel (—) Demonstrate the accurate sinewave mode
sineFreq (— addr) A variable corresponding to the with a 1 KHz sinewave output, 1 VRMS
sinewave output frequency. out, 900 mV offset, lowpass filter set
start [Start output command. Unmasks timer 0 to 1 KHez.
interrupts. demoCircSq (—) demonstrate the circular buffer
stop (- Stop output by disabling the timer 0 operating mode by outputting a 1 KHz
interrupt. square wave between +1V and -1V.
stop? (— flg) Return non-~zero if the timer 0 Filter cutoff set to 40 KHz.
interrupt is masked off. demoFsinel (—) Demonstrate the fast sinewave mode
table (h—) A defining word to create a data table with a 1 KHz sinewave output, 2 VRMS
of n values in code space. Returns the out, lowpass filter set to 1 KHz.
nth value when invoked at run time. demoFsine20 (—) Demonstrate the fast sinewave mode
tbPeriod (— addr) A variable corresponding to the with a 20 KHz sinewave output, 2 VRMS
programmed value of timer 0 counter. out, lowpass filter set to 20 KHz.
The actual interrupt period from timer demoInit (—) Initialize the software for running
0 will be one more than this value (in the demonstration. Performs the same
increments corresponding to the 8 MHz initialization as the normal software
TCLK) . with the exception of the read FIFO
toglFC (—) Toggle the filter clock output if not command vector.
using the hardware timer to control demoMain (—) The demo version of the high level
it. Writes to ASIC address 1F (hex) to operating loop. This loop is the same
cause the filter clock output to as the normal main loop, except that
toggle. it terminates when the command queue
twoPi (— 800) A constant corresponding to the number is empty.
of points used to represent one cycle demoOnce (—) Demonstrate the single buffer
of a sinewave in the sine table. operating mode. Generates one cycle of
|22 (ul u2 - flg) Return TRUE if unsigned ul is a 100 Hz sine that is linearly
greater than unsigned u2. lattenuated to zero.
UMAX (ul w2 — u)Unsigned version of MAX. Return the £ixCQ (~) Adjust the tail pointer and end
larger of ul and u2. pointer of the command queue after
UMIN (ul u2 — u)Unsigned version of MIN. Return the loading the queue to account for its
smaller of ul and u2. actual size.
writePtr (— addr) A variable. Contains the address of high (— addr) A variable used for some simple
the current data queue to load data performance testing. Used to keep
into. track of the maximum number of clock
_DOES (—-) A low level word in building GOES> and cycles to execute tst.
DOES>. low (— addr) A variable used for some simple
_readFifo (— n) Read a value from the input FIFO. performance testing. Used to keep
Waits until there is a value in the track of the minimum number of clock
FIFO. cycles to execute tst.
shoParms (—) Show some of the parameters for the
Demonstration Software Glossary current operating mode if the
operating mode is a sinewave mode.
>cq (n-—) load n into the command queue. Used Displays the current values of phase,
for simulating the hardware input phase increment, delta phase, delta
FIFO. phase increment, frequency, offset,
_xdCQ (—n) Return the next value from the command and scale value.
queue. The normal command fetch is shoSparms { —) Displays some of the
revectored to this word for the variable values relevant to the
demonstration. current operating mode. Shows the
atst (~) A simple performance test to find the values pertinent to a sinewave if in
minimum and maximum number of clock one of those mcde and displays the
cycles to execute tst. This loops lowpass filter cutoff and the output
10000 times. sample period.
btst (- A simple performance test to find the tst (- A test loop similar to the normal
minimun and maximum number of clock operating loop. Used for some simple
cycles to execute tst for the ping timing tests. This word puts a new
pong and once out demonstrations. value into the DAC and then generates
Repeats tst 40 times. the next output value and puts it into
the heolding register.
16 The Computer Journal / #53

Real Computing

RBOCs, C Sickness, HST Modems, Metal and More on Minix

By Rick Rodman

A Dark Day in the Computer World

July 25, 1991 was a dark day in the history of computers.
On that day, Judge Greene reluctantly permitted the RBOCs
into the information-providing business. He was not pleased
with this himself, but felt that the Justice Department had left
him no choice. He foresaw that this will lead to “the elimina-
tion of competition from that market and the concentration
of the sources of information of the American people in just a
few dominant, collaborative conglomerates, with the captive
local telephone monopolies as their base.”

Why is it so bad that the RBOCs are allowed into this
business? After all, won't it result in more and better choices
for the customer? Let’s look at this question.

The RBOCs are not like any other company. Remember,
they have millions of customers who have no choice but to
pay what they charge. Wherever you live in the US., you
have exactly one choice as to your local phone service, and
that is whether to pay what the local monopoly charges you.
They can’t lose money—they're guaranteed a profit by the
FCC and the PUCs. A company that

The RBOCs have a history of providing poor service to
their captive customers while at the same time tugging and
poking at every restriction on them. Deregulating them is
anticompetitive, anticonsumer, antidemocratic. If things
continue to progress in this fashion, the RBOCs will soon
control cable television, too. When they tell you you'll get
better service and more choices, think about how much better
and cheaper your local telephone service has gotten, and
how many more companies you had to choose from. Don't
blame it on the MF]—the MF] only split the greedy,
monopolistic Bell System into seven greedy, monopolistic
RBOCs.

setjmp and longjmp
Ask any C programmer about sefjmp and longjmp, and
he’s likely to mumble something along the line of “those are
the functions you're not supposed to use or know about.”
But these are handy functions to have around.

See Real/53, page 18

can’t lose money is not a fair competi-
tor to a company that can.

The other reason they can’t compete
fairly is that they set the rates charged
to their competitors, but don’t pay
them themselves. How would you like
it if your competitors set your costs
but didn’t have to pay them?

As Judge Greene says, it is
inevitable that GEnie, Prodigy,
CompuServe, Delphi, and whatever
other information providers there are,
will either be acquired or go out of

entirety!—Ed.]

Real Computing

X-10 Revisited, Mach, Minix and Desqview/X

By Rick Rodman

[There are certain disadvantages to publishing a magazine after hours. An obvi-
ous one is where you rush into town between business trips to get ready for press,
hurry through paste up, run off to the printer and finally to the post office and then
find out you dropped the second half of an article! Of course, no one will notice such
a gaff, right? Right. My apologies to Rick, and to those who took the time to point
out my error. Following is the Real Computing installment from last issue—in its

business. Look at what’s happened to
the cellular telephone industry: All of
the major cellular carriers are now
owned by RBOCs. Has this resulted in
lower prices, better quality or any
other benefit to the consumer? In the
words of the immortal Doug
MacKenzie, “No way, eh!”

X-10 Revisited

In issue 48 I wrote glowingly of the
X-10 Powerhouse computer interface,
known as the CP-290, that “any X-10
commands which come across the line
are converted to status messages that
the computer can see”. Mike Morris
writes: “I have a CP-290, and mine

Rick Rodman works and plays with computers because he sces that they are the
world's greatest machine, appliance, canvas and plaything. He has programmed mi-
cros, minis and mainframes and loved them all. In his basement full of aluminum
boxes, wire-wrap boards, cables running here and there, and a few recognizable
computers, he is somewhere between Leonardo da Vinci and Dr. Frankenstein. Rick
can be reached via Usenet at uunet!virtech!rickr or via 1200 bps riodem at 703-330-

9049.

The Computer Journal / #53

does not produce these messages when
[push a button on a manual control-
ler.”
After some experimentation and
consulting with the X-10 gurus at
Home Control Concepts, [have to ad-
mit Mike is right. The CP-290 does re-
port to the computer when buttons are
pressed on it itself, but it doesn’t report
codes that come over the wire. It is a
send-only, unidirectional device.
Actually, the plot’s even thicker
than that. Manual controllers, like the
wall switch modules, don't send codes
at all, they only receive them. There is
no way for a central controller to know
See Real/52, page 19

17

Real/53, from page 17

One use of these functions is to implement coroutines, a
language feature that C doesn’t have but is usually available
in Modula-2. As an example, consider the typical Mac/
Windows/PM program. It has to be written as a “message
loop”, bottom-up style, using messy state variables to keep
track of what's happening at any given time. But by using
coroutines, you can separate the message loop from the
main program logic, which can then be written in
conventional, more readable, “top-down” style. (The
implementation is left as an exercise for the reader.)

The setjmp function is supposed to keep enough state in-
formation for a C program to be able to be restored to that
state later. This means it must save the stack pointer, frame
pointer, and all register variables. In most NS32 implementa-
tions, registers R2 to R7 are used for register variables. The
function is passed a jmp_buf variable, which must be of array
type so that it is passed by reference (address). It cannot push
things on the stack, because it must return with everything
as it was. It returns an integer which is zero when the envi-
ronment has been saved, or nonzero if it returned via
longjmp.

The longjmp function is passed a jmp_buf variable and an
integer value, which should be nonzero. When you call it, it
doesn’t return. Instead, the state information in the jmp_buf
variable (whether it's valid or not) is loaded and execution
continues by returning from the setjmp function again.

The reason | became interested in these functions is the
overwhelming complexity of even the simplest multitasking
routines. Without an emulator, it could be simply impossible
to debug them. However, with non-preemptive or “coopera-
tive” multitasking, it is not necessary to be so concerned
about the machine state, nor deal with the hardware on such
an intimate level. So, by using the setjmp and longjmp calls,
plus one additional call which imitates setjmp, the basics of
Metal’s kernel are being constructed from simple C calls.
This kernel will be message-based internally, using int val-
ues as messages.

Presently, Metal 0.7 is available in an installation kit in-
cluding all source files. To obtain a copy, simply send me
sufficient formatted floppies for 1.4 megabytes in a reusable
mailer with return postage, and I'll put it on them and send it
back to you.

C Sickness
After upgrading my C compiler to 6.0, I spent literal hours
tracking down long math problems. It seems that Microsoft,
in version 6, is even more aggressive in truncating values to
ints. Consider the following statement:

long_variable = 0x40000L; long_variable = long_variable >> 1;

In older versions, and in most C compilers, the value re-
sulting would be 0x20000L. But not Microsoft C 6.0! You see,
the shift count 1 is an int, giving them carte blanche to trun-
cate the other side of the expression to an int too, causing the
result to be zero. So, even though a shift count of more than
16 bits is ridiculous, the shift count has to be changed to a
long. Who asked for this?

Minix on the PC-532
Loading the Minix system onto the PC-532 is a tedious
process. You have to download each of several big files into
RAM in the debugger, write it to an unused hard disk parti-

18

tion, boot Minix, “ncat” the partition into a file, decompress
the file, then “tar x” the file. Just transferring the data takes a
long time; even compressed, there’s about two megabytes of
data to transfer.

So what's it like once the transferring is complete? How's
the “feel” of the system? Well, Minix on the PC-532 is proba-
bly best characterized as fast, but sparse. Only the barest
minimum of necessary files are included with the archives.
The remainder of sources can be transferred from another
Minix system, or obtained from Internet archives if you have
access, or from various mail servers. (A “mail server” is a file
archive which works through E-mail. You send it a message
like “index” or “send foobar.txt” and it sends you its index or
the requested file as a mail message.)

I've just discovered that I can’t use the C compiler,
because my system doesn’t have an FPU. The compiler
provided is Gnu C. A small Emacs clone called “xemacs” is
provided; it’s similar to, but not the same, as “elle”, provided
with Minix 1.5. Presently I'm running the 1.3 kernel.
Probably by the time you read this, I'll have upgraded to the
so-called “1.5 hybrid” kernel, which is a mixture of 1.3 and
1.5, and hopefully I'll have a patched C compiler running as
well.

In other Minix news, many people have complained that
the elvis vi clone included with Minix 1.5 dies with an “alarm
clock” message. (Should we capitalize “elvis”? It's named
after a “pop singer”, I think.) At any rate, the mystery of this
message has been solved. It’s related to the “keytime” func-
tion for slow arrow keys on serial terminals. To disable the
“keytime” and prevent the crash, use the command “:se
kt=0", or create a file “.exrc” in your home directory and put
a line “se kt=0" in it.

The source for elle is not included with Minix 1.5, but the
source to elvis and mined are.

The US Robotics HST Dual-Standard Modem

My BBS is now equipped with a US Robotics HST Dual-
Standard modem, acquired through US Robotics’ sysop pro-
gram. This modem is capable of operating in V.32bis or in
HST mode, both of which are capable of throughput up to
14.4 kb/s. Further, it is equipped with V.42 data compression
as well. Now we're talking fast! Feel free to call up and try it
out, and make comments.

Next time
More on multitasking and the N$32. Also, I've been play-
ing some more with my X-10 devices; and, | hope to have
more to report on Metal and on Don Rowe’s Kotekan oper-
ating system. In the meantime, may your sizeof int's and
your sizeof long’s ever be equal. @

Where to write or call
BBS: 1703 330 9049
{evenings; 1200, 2400, 9600, or even higher!)

Metal OS, ¢/o Richard Rodman
8329 Ivy Glen Court
Manassas, VA 22110

Home Control Concepts
9353-C Activity Road
San Diego, CA 92126
1-619-693-8887

The Computer Journal / #53

Real/52, from page 17
whether a user has manually turned a light on or not.

There is another computer interface available, which is
called the TW-523. This device has an optoisolated TTL-level
interface which can be operated through parallel input and
output bits. It's “dumber” than the CP-290—it has no battery
backup or timers—but it's bi-directional: the computer can
send or receive any X-10 code over the power lines. Remem-
ber, the manual buttons on the wall switch units don’t send
any code. However, you can receive codes sent by other con-
trollers or by motion detectors.

If you're planning a system controlled by a dedicated
computer, the TW-523 sounds like the way to go. It&s avail-
able from Home Control Concepts for $30. It’s also available
as part of a Powerline Interface Kit for $69, which includes a
C library and sample code as well as a cable for connection to
a PC parallel or serial port.

HCC also has available some wireless motion detectors.
These detectors send an on-code when motion is detected,
and an off-code when motion stops, through the same base
unit used by the wireless hand control. Because they’re wire-
less, you can put them anywhere—out in the yard, garage,
parapet, moat, wherever. Because they send a code, you can
not only turn on a light or sprinkler system, you can also
detect the code in your TW-523 and activate a voice synthe-
sizer or camcorder, or switch speakers connected to the ste-
reo, or anything else.

Mike Morris suggests some neat applications for X-10: “I
want to be able to turn on the sprinklers when the ground
gets dry or if the burglar is leaving, but not the day after a
rainstorm. | want to run the dishwasher after everybody goes
to bed, then turn the water heater off but back on an hour
before [get up. And divert the clothes dryer exhaust into the
furnace air intake when appropriate so the furnace grabs the
preheated humidified air.”

Mike also provided some “from the trenches” information
on X-10: “The X-10 signal can have problems ‘jumping’
across the two halves of a 220 volt household circuit. I ended
up acquiring a capacitor of the proper value, installing itina
220v plug and plugging it in. ‘One of these days’ I'll install
the Leviton capacitor module in the main electrical panel, but
for now, it works.”

He also points out that some X-10 lamp modules “forget”
their brightness setting and will “creep” up or down over
several hours, and suggests “refreshing” their settings peri-
odically. (That'll also solve the problem of people using the
manual buttons—and staying too long in the bathroom, too!)
He points out that the CP-290 doesn’t keep accurate time,
losing about an hour per month. Mine has forgotten its house
code a couple of times. “The battery compartment in the CP-
290 does not have a barrier between the battery and the cir-
cuit board. Mine leaked and ate away a few traces, which [
repaired with a small soldering iron and 30 gauge wire.”

Not only X-10, but the whole field of home automation is
booming in popularity these days. The CE Bus, a fully-bi-
directional superset of X-10, is coming. I'll venture a guess
that the reasons for this sudden interest are (a) the increase in
crime, especially senseless violence and vandalism, (b) higher
energy costs, and (c) it’s inexpensive and loads of fun!

Mach on the PC-532
Carnegie-Mellon has released a “Micro-Kernel” for Mach
which contains no AT&T code. If you have ftp access (which

The Computer Journal / #53

I don't), you can get it and play with it. It's called a “micro-
kernel” because it includes no 1/0 or utilities. A “UX server”
task, made apparently of pieces of Unix, is run to provide the
missing capabilities. Some folks at the Helsinki University of
Technology in Finland have been working on bringing it up
on the PC-532. Recently, they reported that they have the
kernel itself running. The Mach kernel is “small”—about a
quarter of a megabyte. They are cross-compiling using the
Gnu C compiler and tools.

At the same time, reportedly, CMU has a number of
people working on a “free” (non-AT&T) Unix emulator, and
the Free Software Foundation (Gnu folks) are supposedly
trying to work Mach into Gnu in some fashion.

Later in the year, the PC-532 Mach will become a part of
CMU's standard distribution. The Encore 32532 system is one
of three “reference ports” provided with OSF-1, also. Hope-
fully someone at National will notice that these are not fax
machines.

Minix

In the meantime, patches have been developed for a 386
version of Minix, under which the Gnu tools are used for
software development. With all the “smallness” of Minix out
of the way, it becomes reasonable to implement subsystems
like TCP/IP and X Window under Minix. However, Andy
Tanenbaum, the author of Minix, originally intended it as a
tutorial operating system for classes, and he doesn’t want tre-
mendous increases in the complexity of the package. For this
reason, it is unlikely that the 386 version will be available
from Prentice-Hall. Instead, if you want to run 386 Minix,
you will have to either obtain ftp access to Internet and spend
hours transferring files so you can have the fun of trying to
cobble the system together from a bunch of patches, after
which you can have the joy of trying to debug it. Some call
the result “Advanced Minix”.

The files you would need are supposedly as follows:

12259 Dec 12 1991 pub/Minix/oz/mx386.tute.Z
John NallZs tutorial.
3623 Jul 11 1990 pub/Minix/o0z/mx386_1.1.01.Z
patch to mx386.
45155 Jun 15 1990 pub/Minix/o0z/mx386_1.1.t.Z
tar file with 386 patches.
12063 Jun 14 1990 pub/Minix/oz/bec.tar.Z
tar file with 386 C compiler front-end.
121962 Jun 15 1990 pub/Minix/oz/bccbinl6.tar.Z
C compiler 16-bit binary.
118254 Jun 15 1990 pub/Minix/ 0z/bccbin32.tar.Z
C compiler 32-bit binary. 43492 Jun 15 1990 pub/Minix/oz/
beclib.tar.Z
386 library sources.
96151 Aug 14 1991 pub/Minix/oz/cpp.tar.Z
C preprocessor (optional?).
30659 Nov 15 1991 pub /Minix/oz/cppmake.tar.Z
Earl Chew’s cppmake program.

The Mars Hotel BBS in Maryland (1-301-277-9408) is sup-
posed to have all these files. It also has a great deal of the
comp.os.minix postings. For the moment, I've decided
against bringing up 386 Minix, because I already have Minix
with GCC on my PC-532.

Minix 1.6 is being beta-tested by some people out there.

See Real/52, page 8

19

Zed Fest ‘91

Where Beer and BIOS Meet

By Lee Bradley

[Talk abounded at the 91 Trenton Computer Festival that 8-bitters should not wait a year to get together. It was decided to hold an affair
in October. Lee Bradley, publisher of Eight Bits & Change, took a leadership role. I asked Lee to fill us in on what transpired. In perfect
North American style, we claim all “Zed-Fest’s,” the festivals held in Germany as reported by Jay Sage not withstanding!-—Ed.]

On October 18th, lan Cottrell, his wife Nadine, daughter
Jenny and son David headed south. John Anderson had sent
his smoked YASBEC north a few days before to Paul
Chidley; Paul put the smoke back in, for this is what is
needed to repair anything smoked, according to lan. lan car-
ried John's YASBEC with him.

By the 19th, the Cottrells, John, the working YASBEC, Lee
and Linda Bradley, Steve Dresser, Howard Goldstein and
Sigurd Kimpel had converged on Walt and Linda Wheeler's
home in Nassau, NY. The keys CMAZE were pressed by
John on his YASBEC. Lee hit <return>.

Zed Fest ‘91 had begun.

Others arrived. Jay Sage preceded Stephen Griswold by
about an hour; Stephen entered the door muttering some-
thing about the map. What really happened with Stephen
and the Sandwich Crew (both Lindas, Nadine and kids) re-
mains fuzzy but the Crew, the sandwiches and Stephen
united at about 3 PM, much to the relief of all. We later
learned the delay was due to T-shirts reading “Our Next Hus-
bands Will Be Normal.” An unusual sandwich-making algo-
rithm predating the Distributive Law added to the confusion:
For Turkey = 1 to Turkeys_Ordered; Get Roll; Dollup _of
Mayo; Turkey Slice; Lettuce Leaf; Assemble; Wrap;
Cleanup; Next Turkey. [Ed: Notice Cleanup is inside the loop?]

lan got Trenton ‘92 on the agenda. Jay took notes: April 11
and 12 this year (early!). We'll set up a booth at the Flea
Market and have people assigned time slots to man/
woman/ computer it. Demos and talks will be intermixed in
the lecture hall as well, but the emphasis will be outside. Call
us if you want to help. We need Banners, Books, Brochures,
BDOS’, BIOS” and Bodies.

We talked of having our own awards at our own banquet
Saturday night. Why should everyone eat gray roast beef and
be put to sleep by an acceptance speech when we can pick
our own meal and our own winners?

John Anderson’s wife Judy joined us for dinner at the
Four Brothers restaurant with the memorable quote: “John
wants to build a CP/M LAN in our living room.” The double
anchovy pie eating contest was temporarily put on hold
when anchovies were not found on the menu. Menus weren’t
a big thing for those present; we asked the waitress and
found anchovies to be an undocumented topping. We or-
dered. lan entertained those near him with some great new
jokes and repeated the best on for those out of earshot when
we returned to the Wheelers'.

20

Many of us descending into Walt's basement to call GEnie
and join the 10 PM Saturday night CP/M conference. Chris
McEwen, Brian Moore and John Anderson (who had gone
home to Albany) were on. Chris asked for a write-up on Zed
Fest.

Sunday morning, after a run with Linda Wheeler, Stephen
and Jay, we talked briefly of BYES and ZREMOTE. lan men-
tioned ZMD 2.0 possibilities and then we all watched a video
of Walt flying a parachute-equipped ultra-light. Apple pies
and Mexican dip materialized after a three hour session dur-
ing which Jay, Howard, Stephen, Walt and I tried to bring
Walt up to Z33 (almost made it but a Trantor/Osborned sys-
tem got us in the end—where were you, Daryl, when we
need you?).

Jay left around 3 PM. My wife and I took Howard and
Steve home to New Haven and West Hartford, rolling in at 9
PM.

The photos will have to wait for next issue as black-and-
white processing takes longer than color. All in all, it was a
lot of fun! Sure hope we will see you at the next gathering'®

(=)
Computers: A Kid’s Perspective
By David Cottrell, Otawa ONT

I have had many opportunities to attend computer
events all the country. | was at Zed Fest (I am Canadian),
the fair at Trenton, and Walt Wheeler’s get-together in Al-
bany because my father, lan Cottrell, always promises me
fun-filled vacations.

Right.

No offense, but my idea of a good time is not listening
to people talk about PBBS, RAM, ROM, Megs and hard
drives. I'm into Ultima, Pac-Man and Super Mario. On the
bright side, I have made many good friends and have seen
some nice cities.

Maybe if | put my mind to it, I might learn what PBBS
stands for and if $300 is a good price for a hard drive. Oh,
well. I still enjoy computer shows and if you hear lan
Cottrell will be at a show, then you can almost count on
my being there. Now, if only someone would tell me what
Eight Bits and Change is supposed to mean....@

\— </

The Computer Journal / #53

Z-System Corner
Implementing a Keyboard Buffer Using the NZCOM Virtual BIOS

By Jay Sage

First Some Personal Comments

Until I was 27 years old and met my wife, [had essentially
never been out of the United States, and the same is true of
my parents to this day. My whole family had the common
American myopia that pictures the whole world as thinking
and acting pretty much the same way we do.

My wife, on the other hand, came from a very different
background. She was born in one country and spent several
years living in a second before she came to the United States.
Her father’s history was similar. When my wife was born, he
was living in his fourth country, and today he lives in his
sixth!

It was not until our honeymoon that 1 made the dramatic
step of leaving North America and setting foot on another
continent. My life and outlook were irrevocably altered. A
few years later when my employer offered me the
opportunity to go to Japan and spend a year working at the
Toshiba Central Research Laboratory, I jumped at the
opportunity. It was a splendid year, and I loved Japan. The
very different culture, however, helped me see my own
culture in a way that was probably not possible without that
experience. 1 came back with an enormously greater
appreciation for what my own country offers, an
appreciation that continues unabated.

My wife, keenly aware of the importance of a world per-
spective, wanted to get our children started early. She had
the idea that, rather than simply visiting with her parents in
Switzerland, we should take the opportunity to expose our
children deeply to European culture by enrolling them in the
public school there. (The school calendar in Europe is differ-
ent, and our children can get in about six weeks of school
after their school here ends.)

Since we preferred that the children learn a language
more widely spoken than a Swiss dialect of German, we de-
cided to rent a vacation house in the mountains of the nearby
Black Forest in Germany. This is a wonderful place to spend
a vacation, and the children learn the language that my
wife’s family has used since coming to the United States. Last
summer was the sixth year, and | am always thrilled to hear
the children talking comfortably with their German friends.
Last summer, rather than sleep late and have us drive her to
school, my 11-year-old daughter preferred to get up early
enough to catch the school bus at 6:30 am (!) so that she
could spend the time with her friends on the bus.

Computer User Groups in Germany

Now we come to the first of the connections between this
story and my TCJ column for this issue. In the first few years
I was in Europe, | tried very hard to promote Z-System there,
but it was a very frustrating experience. I knew that MS-DOS
computers had not yet made the same inroads that they had
here and that even businesses were still using CP/M
computers. However, in Germany and Switzerland, the
culture apparently did not lend itself to the formation of user
groups as in the United States (and England and Holland). I
was able to find a few individuals interested in 8-bit
computing, but no user groups. Those individuals confirmed
my impression; they, too, felt all alone.

One year | traveled to Munich to visit a fellow owner of a
BigBoard | computer. I learned of him when he wrote a letter
to MicroCornucopia magazine. While in Munich, | wandered
into computer stores, each time asking if they knew of any
CP/M clubs in Germany. The answer was always no. I did
find one salesman, Zvonimir Racic, who was interested

enough to start one, but it did not last

even to the next summer. | have had

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announced its plan to se! up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-
ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation fo solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as SAGE@LL.MIT.EDU.

The Computer Journal / #53

no further contact with him.

Since 1 was having no luck search-
ing for 8-bit enthusiasts in person, I
decided to try another approach. With
great effort (and help from my wife
and a German colleague at work here),
[composed a letter-to-the-editor in
German to one of the major German
hobbyist magazines. They never even
acknowledged it. At that point | gave

up trying.

ZedFest Germany!

Given those earlier experiences, you
can imagine how excited I was this last
summer to be at the first European Z-

21

System Festival. In the small town of Brackenheim, Germany,
near Stuttgart, a small but growing group of 8-bit activists
got together to make plans, to share viewpoints, and, most
importantly, to meet each other face to face.

It all started when Uwe Herczeg, at whose computer store
in Brackenheim the meeting was held, decided to put a small
ad in Computer Flohmarkt (Computer Fleamarket), a news-
print magazine filled almost entirely with classified ads. His
ad sought contact with any other CP/M computerists who
might still be left in Germany. Amazingly, he received more
than one hundred responses! Among them were the people
at the ZedFest, who form the core of the CP/M activist com-
munity in Germany today.

The man I was most eager to meet was Helmut Jungkunz.
I no longer remember exactly how we first came into contact
(maybe he will tell some stories some day here in TCJ), but
we had been in very active communication for over a year.
Helmut is the ‘nuclear reactor’ that powers the 8-bit commu-
nity in Germany. He introduced Z-System to Germany, is
sysop of Z-Node #51 in Munich, is the only Z-System dealer
in Europe, and heads the Schneider/Amstrad CPC User
Group. If only I had run into Helmut years before when |
was in Munich!

Also at ZedFest Germany was Tilmann Reh, whose ar-
ticles on the Z280-based CPU280 computer you have seen in
this and the previous issue of TCJ. 1 had communicated with
him several times over the Internet, and I was eager to meet
him. He traveled to the meeting by motorcycle and was quite

a sight in his sleek, black leather riding outfit and space-age
helmet.

Tilmann brought along a CPU280 card to show me. It was
hard to believe that such a powerful computer could fit on
such a tiny card! Of greater interest to others at the meeting
(they were almost all using the CPU280 already!) was the
prototype he brought of the IDE disk controller for use with
the CPU280. Uwe Herczeg was working on the software to
integrate it into the system.

Others present were as follows: Fritz Chwolka, head of
Club 80 in Aachen, on the western border of Germany near
Belgium and Holland; Herbert Oppmann, member of the
MTX User Group, which now supports ZCPR33 for the MTX
computers; Andreas Kisslinger, also from Munich, well at
home with several operating systems, and an expert Z80 pro-
grammer; and Guenther Schock, a hardware expert whose
projects, such as an LCD terminal and a CP/M-Plus laptop
computer, we may soon read about in TCJ.

Finally, I was especially flattered by two hobbyists who
came from very far away to meet me. Juergen Peters, a main-
frame hardware engineer by profession, drove down from
Hamburg in the far north of Germany. Franz Moessl’s trip
seemed the most impressive, even though the actual distince
was considerably less than from Hamburg. He came all the
way from ltaly, where he lives in 8-bit isolation in the Tirol, a
part of northern ltaly adjacent to Austria.

For two days, we all had a wonderful time talking com-
puters and socializing (and, of course, drinking beer!). Dur-

Listing 1. The code needed to implement the keyboard
buffer in the NZCOM virtual BIOS.

; Everything is standard in the KEYBIOS, even the opening
; jump table

START:
WBOOTE:

BOOT ; Cold boot
WBOOT

CONST

CONIN

CONOUT

LIST

PUNCH

READER

CRCIC R R R I

. standard VBIOS code omitted here

~

; We make a small change in the auxillary IOP jumps. The
; console status (CONST) and console input (CONIN) entries
; jump to our new code.

AUXJIMP:

CONST: JP KCONST ; Jump to extended routine
CONIN: JP KCONIN ; Jump to extended routine
CONOUT: JP ICONOT

LIST: JP ILIST

PUNCH: JP IPUNCH

READER: JP IREADR

LISTST: JP ILSTST

End of Header.... The following code is free-form and
may be moved around if necessary.

Ne we

~e

The new code for the keyboard buffer is inserted right
after the auxilliary jump table. It starts with an
identifying signature. Then comes the actual keyin
buffer followed by the new code. The buffer starts with a
word that points to the next character to fetch, if any.
The pointer is initialized to the start of the buffer,
which is initialized to a null to indicate the end of the
buffer's contents.

e me ws we Ny we we owe

The following equate defines the number of actual
characters that the keyboard input buffer can hold,
exclusive of the terminating null and the header
information.

~e - o~

kbufsize equ 60
db ‘KEYIN' ; Signature
db kbufsize ; Length of buffer
keyptr: dw keybuf ; Pointer to next char
keybuf: ds kbufsize,0 7 Fill with nulls
;

db 0 Terminating null

; Subroutine to fetch the next key from the keyboard buffer
; and set zero flag if no character. HL is left pointing

; to the pointer to the next character.

ktest: 14 hl, (keyptr) ; Get ptr to next char
1d a,(hl) ; Get the character
or a ; Test for null
ret

; Extended console status code. It checks the keyboard
; buffer and returns true if there is a character in the

; buffer. Otherwise it passes the call on to the CBIOS.
keonst: call ktest ; Test for key in buffer
jp 2,iconst ; If none, call BIOS
14 a,0ffh ; Otherwise return FF

ret

; Extended console input code. If there is a character in
; the keyboard buffer, then it is returned and the pointer

; is advanced. Otherwise the CBIOS is called.

keconin: call ktest ; Test for key in buffer
jp z,iconin ; If none, call BIOS
inc hl ; Increment pointer
1d (keyptr),hl ; Save it
ret ; Return with key in A

; ... the rest of the stardard VBIOS code follows

The Computer Journal / #53

ing one of the discussions 1 was told about an important
issue that constitutes the second connection between comput-
ers and my personal comments earlier.

Programming for Compatibility—Again!

In my previous column | talked about making Z-System
programs compatible—or at least tolerant—of vanilla CP/M.
Ideally, Z-System programs would work to the extent
possible in whatever environment they found themselves; at
the least they would terminate in a graceful manner. It is too
early to tell how responsive the community will be to my
message, but the initial indications are very positive. Howard
Goldstein, after proofreading the draft of my column,
immediately fixed up LPUT and LBREXT. As soon as Rob
Friefeld received and read my column, he started to look at
his programs.

There is a second issue in programming for compatibility,
and that is programming for compatibility in culture and
language. For years, we in the United States have been writ-
ing our programs with only our own keyboards, our own
screens, and our own language in mind. We did not do this
out of disrespect or deliberate disregard; we did it because
nothing made us think of a more cosmopolitan picture. In
our experience, only Americans were using Z-System. That
has now changed, and we need to change.

| won't be able to cover all the implications of this here.
For one thing, | do not yet know myself what all the
implications are. We will need to communicate with and

learn from others in the world who are using and developing
8-bit computers.

There are two issues that | will mention here. The most
important one is the use of special characters. In the United
States, we are quite accustomed to using various special char-
acters, often for pseudo-graphics. For example, we may use
the verticule (vertical bar) character (ASCll 7C) as a separa-
tor. Most European languages (and probably non-European
languages, too) have characters with accents, and these are
represented by the ASCII codes for special characters. In Ger-
many, for example, the following associations are apparently
used:

[upper case A with umlaut
\ upper case O with umlaut
] upper case U with umlaut
{ lower case a with umlaut
| lower case o with umlaut
} lower case u with umlaut

When we include those characters in our programs, the
screen displays in Europe (and Canada, for that matter) are
often not pleasant.

The second issue concerns language. For example, pro-
grammers in the United States generally assume that yes/no
questions will be answered with "Y" or 'N’. In Germany,
however, it would be nicer if ‘]* (for ‘ja’) and ‘N’ (for ‘nein’)
could be used. In France it would be ‘O’ (for ‘oui’) and ‘N’

Listing 2. Rudimentary version of the KEYIN utility for
filling the keyboard buffer in KEYBIOS.

; Program: KEYIN
; Author: Jay Sage
; Date: October 1, 1991

This program manages the keyboard inbut buffer in the
special version of the NZCOM virtual BIOS called KEYBIOS.
It interprets the command tail and adds the indicated
input to the keyboard buffer (if it fits).

sigoff equ 97H ; Offset to signature
cr equ 0dh
1f equ Oah
bell equ 07h
tab equ 0%h

; Library routines

extrn 23init, eprint

keyin:
ip start
db ‘Z3ENV’
db 1
env: dw ¢] ; Filled in by 2CPR33+
dw keyin s For type=4 version

; Target signature that identifies KEYBIOS.

sign: db ‘KEYIN' ; KEYBIOS signature string
nsign equ $ - sign : Length of signature

; Signon message

signon:
call eprint
db /KEYIN, version 1.1 (10/01/91)’
db cr,lf
db 0
ret

; Show help message.

help:
call eprint
db * Ssyntax: KEYIN string’,cr,lf
db 0
ret

; We get here if the signature is not right. Report problem
; to user and terminate.

badbios:
call eprint
db + KEYBIOS not present!’,cr,lf
db 0
ret
start:

; Initialize environment

1d hl, (env)
call Z3init

; Display signon message
call signon

; See if there is a command tail.

1d hl,80h ; Point to tail buffer

1d a,(hl) ; Get count

or a ; Test for zero

jr 2,help ; If zero, show help screen

; Make sure that the KEYBIOS is running by checking for the
; signature.

1d hl, (1) ; Get warmboot address

1d de,sigoff-3 ; Offset to signature from
; ..warmboot entry

add hl,de

The Computer Journal / #53

23

(for ‘non’). We also, of course, display all screen information,
including prompts, in English.

Is there anything we can do to be more accommodating in
these matters? I'm not sure about the whole solution, but |
have some ideas. For yes/no questions, we could allow for
all common language possibilities: ‘Y’, /7', ‘O’, and ‘S’ for the
affirmative, for example (do we need anything other than ‘N’
for the negative?). Another possibility is that we include a
language configuration screen with the ZCNFG CFG file pro-
vided with programs. Simple language changes, such as the
letters used for yes and no and the characters used for special
functions, could be changed using this screen. ZCNFG might
be able to handle more significant text items for programs
with little text output.

When a program provides a lot of text output to the
screen, there may be too many changes to handle with
ZCNFG, and we might have to go back to the old overlay
method of configuration. Our programs could come with
source code for language overlays. Authors with skills in
other languages might even take a stab at providing some of
these overlays themselves. Otherwise, native speakers in

various countries could provide the overlays.

To make it easier to use such overlays, one would want to
collect all the messages that a program uses in one area
rather than scattering them throughout the program as we
generally do today. Rather than using SYSLIB routines like
PRINT that display characters provided in-line in the code,
we should use routines like PSTR that display characters
pointed to by a register pair. Such source code is not as
convenient to read, but it would make patching much easier
(and it makes debugging easier, too). Another small detail
would be to provide some extra spacing between message
strings in case a message in another language is longer.
Except in very rare instances, the slightly longer code that
results from this approach will not be an undue burden.

New Z-Nodes
Before turning to the main technical subject, I would like
to announce four new Z-Nodes that joined in the past two
months. Dave Chapman in Victoria, British Columbia (604-
380-0007), and Terry Bendell in Collingwood, Ontario (705-
444-9234) are our two new nodes in Canada. Ewen McNeill

1d de,sign ; Point to signature

id b,nsign ; Length of signature
sigtest:

1d a,(de)

cp (hl)

jr nz,badbios ; Jump if no match

inc hl ; Bump pointers

inc de

djnz sigtest ; Test whole signature

; Now we are ready for the real task

la a, (hl) ; Save the size of

1d (kbufsize),a ;i . the keyboard buffer
inc hl ; Point to pointer

1d (kptradr),hl ; Save its address

14 e, (hl) ; Get its value into DE
inc hl

1d d,(hl)

inc hl ; Point to start of buffer
id (keybuf), hl ; Save the address

1d hl,buffer ; Point to working buffer
1d be,0 ; Initialize count

i Copy any remaining contents of keyboard buffer to working
; buffer

jr z,fillkey ;7 If null, we’'re done
ine de ; Otherwise, bump pointers
inc hl
inc c ; Increment the count
jr z,overflow ; If we reach zero,

; s.definitely too many
jr copy2a ; Else loop back for more

; Now we have to copy the contents of the work buffer back
; into the keyboard input buffer.

fillkey:
1d a, (kbufsize) ; Make sure there is room
cp c
jr c¢,overflow i Too many characters
1d de, (keybuf) ; Get start of buffer
1d hl, (kptradr) ; Address of pointer
1d (hl),e ; Set pointer to beginning
inc hl
1d (hl),d
1d hl,buffer ; Point to working buffer
inc be ; Adjust counter to include
; ..trailing null
1dir ; Copy it all
ret ; We’'re done

; We get here if the keyboard buffer is too small to hold

copyl: ; all the characters. For the moment we just give a message,

1d a, (de) ; Get next character from ; but the code should call the error handler if possible. If
i «.kKey buffer ; there is no error handler, then the MCL should probably be
1d (hl),a ; Write to working buffer ; cleared.
or a ; Set flag
jr z,copy?2 ; If null, break out of loop overflow;
inc de i Otherwise bump pointers call eprint
inc hl db 'Too many characters for
inc c ;i Increment count db ‘keyboard input buffer.’
jr copyl ; Loop back for next char db cr,1lf
db 0

; Now we have to add the new characters from the command ret

; line. HL still points to working buffer. This code needs

; to be extended with the full functionality of ECHO.COM so ; Data items

; that control characters and other special characters (such

; as semicolons) can be entered. dseg

copy2: kbufsize: ds 1 ; Size of keyboard buffer
1d de,82h ; Point to second char (if kptradr: ds 2 ; Address of next-char ptr

; ..any) in command tail keybuf: ds 2 ; Address of beg of buffer

copy2a: buffer: ds 257 ; Working buffer
1d a, (de) ; Get the character
ld (hl),a ; Store it in working buffer end
or a ; Set flag

24 The Computer Journal / #53

has established the first Z-Node in New Zealand. His node is
running, | believe, on a mainframe computer. Those who call
in at 64-4-389-5478 in Wellington will learn about other ways
to connect to the system. Finally, we also have a new node in
the United States. The Kaypro Club of St. Louis has turned its
system, run by sysop Bob Rosenfeld, into a Z-Node. It can be
reached at 314-821-0638 on the MOSLO/24 outdial of PC-
Pursuit. Give these new nodes a call and welcome them to

our ranks.

An NZCOM Virtual BIOS Keyboard Butfer

Z-System'’s extended batch processor, ZEX, is a very pow-
erful tool with many fascinating and effective uses. Like
SUBMIT or the MS-DOS batch facility, it can carry out a
sequence of commands. However, if this is all one needs,
then alias scripts should almost always be used instead, since
they impose no additional system overhead.

ZEX, because of all the powerful features it provides,
takes up quite a lot of memory. 1 just ran the utility
TPA.COM on my system. Invoked from the command line, it
reported a TPA of 51.5K; running it under ZEX gave a figure
of 475K. Thus ZEX cost 4K of memory: 2K for its own code
and 2K because its RSX (resident system extension) locked in
the 2K command processor.

The situation where ZEX has been indispensable is when
one wants a script not only to invoke commands but also to
provide ‘interactive’ input to a program. If programs can
accept input on the command line, then an alias script can
handle the situation, but many programs take their input
only interactively.

Once ZEX is loaded, it remains in memory until all com-
mands in its script have been totally completed. There have
been numerous occasions when I have wanted to feed just a
short string of characters to a program before 1 proceed
manually. In such a case, I really hated to suffer the memory
penalty of ZEX to accomplish this. In some cases, such as
with my database manager, the program would not be able
to run with ZEX in place.

The solution I present here provides yet another example
of the power of the NZCOM virtual BIOS. I simply added a
little code to my normal virtual BIOS to implement a key-
board buffer, and then I wrote a utility to fill that buffer. The
BIOS 1 called KEYBIOS; the utility I called KEYIN. A typical
command line (probably in an alias) would look like:

KEYIN string for program;PROGRAM

KEYIN fills the keyboard buffer. Then, when PROGRAM
runs and requests user input, the KEYBIOS sees characters in
the buffer and returns them to the program. How this works
will be clearer after you see the code for KEYBIOS.

KEYBIOS

The new code contained in the virtual BIOS to support the
keyboard buffer is shown in Listing 1. Here is what the code
has to accomplish. When a program calls the BIOS to get a
character, the virtual BIOS must first look in the keyboard
buffer. If it finds a character there, then it returns that charac-
ter and sets its pointer to the next character. If the keyboard
buffer is empty, then the code simply passes the job on to the
real BIOS, which will return a character actually typed at the
keyboard.

One complication is that the BIOS also supports a function

The Computer Journal / #53

(called console status) that asks if there is a character ready
without actually fetching it. We have to fake out that call,
too. We follow a similar strategy. We first look in the key-
board buffer. If there is a character there, then we report back
that a character is ready. If there is no character in the buffer,
then we pass the job on to the console status routine in the
real BIOS. It is amazingly simple!

How do we do all this? Well, I think the code in Listing 1,
with all its comments, is fairly clear. There are just a couple
of things [would like to elaborate on.

The code includes two items that are not actually needed
by KEYBIOS for its functioning. First, the code includes a
signature string, ‘KEYIN’, at an established location. This
allows a utility, such as the KEYIN.COM program that we
will discuss in more detail shortly, to determine that the
appropriate VBIOS is present. Following the signature string
is a byte containing the length of the bufter. KEYIN.COM
needs this to know how much space is available in the buffer.
Without this information, it might overfill the buffer and
clobber code.

The implementation of the buffer itself is much like the
multiple command line in ZCPR3. At the beginning of the
buffer there is a word that contains the address of the next
character available from the buffer. A null character (ASCII
value zero) is used to indicate the end of the buffer.

The KEYIN Utility

Listing 2 shows a very rudimentary version of the KEYIN
utility that is used to add characters to the keyboard buffer in
KEYBIOS. Again, the listing with its comments is largely self-
explanatory, and | will elaborate on only a few issues.

First, in view of my earlier discussion, | am embarrassed
that this code does not have the facilities for language invari-
ance that I recommended. | was tempted to put them in for
the listing, but 1 decided that there would be too much risk of
introducing an error. Before releasing the full version of the
utility, I certainly will follow my own advice.

The code does try to be quite rigorous. Once the program
has displayed it signon message, it checks to see if any data
has been passed on the command line. If there is none, a
syntax message is displayed and the program terminates. In
the final version, the code should check for the standard Z-
System help request “//” in the command tail.

Next, the code looks for the signature string at the proper
offset in the BIOS. If it does not find it, then an appropriate
message is displayed and execution terminates. Otherwise,
various information from the buffer header is fetched and
stored for later use.

There may be characters already in the buffer, and KEYIN
is designed to retain them and to append any new input. In
the final version, one might want an option switch to flush
any characters that remain in the buffer. To make the work
easier, a temporary buffer in KEYIN is used to form the new
contents for the keyboard buffer. Therefore, we start out by
copying anything in the key buffer to the working buffer.

Next we append characters from the command tail. In the
final version of KEYIN, the code should include all the spe-
cial string interpretation techniques used in ECHO.COM so
that control characters and other special characters that can-
not be entered directly in the command tail (such as semico-
lons) can be included.

Since the structure of KEYBIOS is such that the buffer can
never be longer than 255 characters, we monitor the number

25

of characters in the working buffer and abort if the count
exceeds that value. Once the working buffer is completely
filled, then we check the actual character account against the
actual size of the keyboard buffer. If all the characters will fit,
we move them into the buffer and set the pointer to the
beginning of the buffer. KEYIN can then return control to the
command processor.

If the characters will not all fit in the buffer, then we have
to do something else. In the simple version in Listing 2, the
program simply gives an error message and aborts. This
leaves the key buffer unchanged. In a fully developed ver-
sion of KEYIN, the error handler should be called so that the
user can decide how to deal with the problem. If no error
handler is available, then we have a more difficult problem.
One course of action would be to clear the key buffer and
flush the entire command line buffer (and terminate ZEX if it
is running). Another possibility might be to clear the key
buffer but allow the subsequent commands in the command
line buffer (or ZEX) to run. The user would then have to do
manually what KEYIN was trying to care of for the user.

Very Important Caveats

As it turns out, dealing with characters at the BIOS level,
as we do with KEYBIOS, involves some troublesome issues.
When [first got KEYBIOS running, | was surprised that 1
always lost the first character that | put into the buffer. That
missing character then appeared the next time the command
processor prompt appeared. Many of you have probably
seen a mysterious character like this, and you may have rec-
ognized it as something you typed earlier that was ignored.

It is beyond the scope of this article to deal with this issue
fully. Basically, it derives from a fundamental flaw in the
design of CP/M. As we have seen, CP/M has a function to
get a character from the BIOS and to ask the BIOS if a charac-
ter is ready. But there is no way to ask what the character is

without actually fetching it.

Why is that a problem? Well, the disk operating system
(BDOS or equivalent) often provides special processing when
the characters control-C, control-S, or control-P are pressed.
Unfortunately, as we just noted, it has no way of finding out
if one of those characters has been pressed without reading
the next character. If the character turns out to be one of the
three special ones, all is well; it processes the character.

But what if it is some other character. The BDOS would
really like to say, “so sorry, not for me” and put the character
back for the application program to read it. But it can’t do
that. So it does the next best thing. It puts it into a special
buffer in the BDOS, and the BDOS plays the same kind of
trick that we do in KEYBIOS. When a program asks for a
character, BDOS first checks its special one-character buffer.

When programs perform all their character 1/0 using the
BDOS or all of their 1/0 using the BIOS, then things will
work reasonably well. However, if calls to the BDOS and
BIOS are mixed, then characters can get lost in the BDOS
buffer only to appear later when not wanted.

Every time I tried using KEYIN, | found that the com-
mand processor swallowed a character when it took control
after KEYIN was finished. The pragmatic solution was to
include a backspace character as the first one in the keyboard
buffer, since the command processor would ignore it.

There are some other issues that KEYBIOS does not ad-
dress. For example, some programs begin by flushing charac-
ters from the BIOS. Here is how they do it. They call CONST,
and if there is a character they read it. This is repeated until
CONST reports that no characters remain. Such a program
will completely defeat KEYIN/KEYBIOS. Joe Wright has ad-
dressed these issues very carefully and cleverly in his 10Ps
(such as NuKey). KEYBIOS, however, is meant to be a very
simple, minimal-memory solution, and it seems to do the job
in my applications.@

I

Editor, from page 2

months. After all these years of reaching around the world
with my computer, | guess | assumed everyone was doing it.
This turns out to be a false assumption.

CP/M users seem particularly confounded by the Internet.
There were no good tools in CP/M to use the net until last
year. | have been hoping for an article on using David
Goodenough’s UUCP tools. Nothing has come up so far.
We've drawn another blank with Fido compatible CP/M bul-
letin board systems, though there are at least three out there.
Consider this a Call for Papers on telecommunications.

On Today’s Menu:

We had a short article in the last issue on a Z280 based
system from Germany. The information was so new then that
I did not even have a return address to the author! Tilmann
Reh returns with more for us. This doesn’t take away from
the YASBEC, but it does prove an adage. When it rains, it
pours. These two systems come after a drought of several
years in CP/M hardware development.

Wayne Sung presents an interesting way to wire a large
LAN with very low cabling costs — piggyback on your in-
house cable television system. Of course, this presumes you
have found a need to install a cable television system. Don’t

26

be too quick to scoff the idea, though. University campuses
are wired and the technology is transferable. Could this idea
be expanded to community-wide networking over commer-
cial CATV? Think about it while you read Wayne's article.

Jan Hofland returns with his Arbitrary Waveform Gerncerator,
discussing the software at greater length. You will recall that
we had the schematics for this project last issue. We will
finish the series next time with the last of his source code. Jan
built this system to provide a test bed for structural testing,
and used the Harris RTX2001 and EBForth. This is the kind of
article I enjoy. Not your common everyday project!

Terry Hazen completes his topic on 10Ps while Al
Hawley continues with Getting Started in Assembly Language,
discussing functions with structured programming. Both
have proven to be very popular topics.

I would like to welcome Lee Bradley to our pages. He
reports on the Zed-Fest held in Nassau, NY. Lee publishes
Eight Bits & Change, which we have mentioned several times
in the past. You will enjoy his humor. I always like to take a
break when Lee’s articles come in.

It seems that Reader-to-Reader struck a popular chord. We
have received a number of good letters. The direction this
publication takes is given by you, and I always look forward
to your feedback as do the authors. [will try to include as

See Editor, page 45

The Computer Journal / #53

Getting Started in Assembly Language

Implementing Functions with Structured Programming

By A.E. Hawley

In Assembly Language Programming, part 3, we discussed
program structure, using ZCNFG as an example. While writ-
ing that article, I realized that there was considerable room
for improvement in ZCNFG itself. Version 18 was released
soon thereafter, followed by version 19. ZCNFG19 contains a
major enhancement: the ability to extract its CFG files from a
LBR type library. 1 hope that you were able to use the latest
version in conjunction with that article. We will continue to
use ZCNFG19 to illustrate this month’s subject. Along the
way, we'll encounter a solution to a coding problem that
may surprise you. The problem: to write a block of assembly
code that sets a flag (Z, for example) if A contains a byte
which is either 0 or contains exactly 1 set bit. Try your hand
at this before before finishing this article. You may be sur-
prised at the solution.

Functions in ZCNFG

When ZCNFG is running, the user selects a configuration
item from a menu by typing its identifier. If data is required,
he is asked for it on a prompt line. The screen is then
updated to show the new configuration. This process is re-
peated indefinitely until the user selects an item that causes
the program to terminate. This flow of data is illustrated in
Figure 1. Data input from KEYBD (the user) to the SETOPT
routine is used to select a record from the current case table.
SETOPT uses that record to select the function FN (=IN_FNn
& LD_FNn) to execute. FN uses data contained in the case
table record to modify the configuration block. SETOPT is an
infinite loop! Figure 1 only shows data flow for configuration
items, A second case table, internal to ZCNFG, is always
effectively appended to the one from the CFG file. That table,
a fixed part of ZCNFG, contains the pointers and data
required to change menus, display help screens, and exit
from the program. The SETOPT and MCASE routines
together are an implementation of a Finite State Machine.

ZCNFG performs 9 distinct configuration functions,
FNO...EN8. Each FN is implemented as a subroutine with two
entry points, IN_FNx and LD_FNx, where x is 0..8. As
shown in Figure 1, IN_FNx transfers data into the CFG block

with any translation required. LD_FNx transfers data from
the CFG block to the Menu Screen Image in memory, again
with any translation required to convert back to printable
text. For example, FN8 toggles a byte between the values of 0
and OFFH in the CFG block and between a pair of strings
(like YES and NO) on the screen. The entry points for the
Functions are listed in a table (FNTBLE:) in the order of their
number. New Functions can be added to ZCNFG by writing
the code and adding the new entry points to the table.

To summarize, each Configuration Function has two basic

tasks:

1. IN_FNx updates configuration block data, requesting
additional input from the user if required.

2. LD_FNx updates the screen image from data in the con-
figuration page.

Figure 1. CONFIGURATION DATA FLOW IN ZCNFG
KEY ——> (SETOPT) <———=wm—————m—== [MENU LIST, CASE TABLE)
: |
l
...... ->#%--> (IN_FNxX) €<=w-———ww-— [CASE TABLE RECORD X]
L2 S /
| Fmm e + tmmm +
*--> |COPY OF TGT | <-— (INIT) -- |TGT PGM |
*<-- |PGM CFG BLOCK| -- (EXIT) --> |CFG PAGE|
| B + Fom e +
|
*e-> (LD_FNX) <—=m—————mm {CASE TABLE RECORD Xx]
e >*
!
CRT <-- [SCREEN IMAGE] <--*
NOTES:
1. [] indicates parts of the CFG file in memory.

2. () indicates routines in ZCNFG that process data.
3. Some functions require keyboard input to IN_FNx.

In both cases, error handling code may be needed to de-

tect inappropriate values and take suitable action.
In ZCNFG19, EN7 has been rewritten. FN7 in earlier
versions rotated a bit in the 3 Isb positions of a byte, leaving
bits 3-7 unchanged. The new FN7 is

A. E. (Al) Hawley started out as a Physical Chemist with a side line love of
electronics when it was still analog. He helped develop printed circuit technology,
and contributed to several early space and satellite projects. His computer experience
started with a Dartmouth Time-Share system in BASIC, FORTRAN, and ALGOL.
His first assembly language program was the REVAS disassembler, written for a
home-brew clone of the Altair computer. As a member of the ZCPR3 team, he helped
develop ZCPR33 and became sysop of Z-Node #2. He has contributed to many of the
ZCPR utilities, and written several. He is author of the ZMAC assembler, ZML the

linker, and the popular ZCNFG utility.

The Computer Journal / #53

superset of the old, rotating a bit in an
arbitrary field of bits in a byte. In the
following paragraphs we will examine
this new code in detail to illustrate this
structured approach to programming.

Function Environment

In order to write a Function, all of
data sources and destinations

27

required by the function must be defined. In addition, there
must be provision for error handling if error conditions can
occur.

A function is invoked under two circumstances. The first
occurs when the user selects a menu item to change; the
MCASE routine transfers control to the appropriate IN_FNx
entry. After performing its task IN_FNx transfers control to
LD_FNx. The second occurs when ZCNFG is first invoked;
the initialization routine MAPPER invokes LD_FNx for every
configurable item in the CFG file to make screen image fields
reflect the current configuration of the target file.

MCASE and MAPPER both perform a housekeeping task
whose main purpose is to make functions easy to write in a
standardized manner. They transfer the parameters from the
selected Case Table Record to a standard 7 byte data
structure at OFFSET: whenever a new configuration item is
selected. The data structure is shown in Listing 1. The
meaning and use of the byte at CFGD depends on the
function being performed. For FN7, this byte is a mask which
defines the sequence of bits (a field) in a target byte that is to
be processed. Usage of CFGD and S_LIST are fully described
for each FN in the documentation distributed with ZCNFG.

There are two kinds of errors possible in most programs:
recoverable errors and fatal errors. In ZCNFG recoverable
errors are such things as user input which specifies an unim-
plemented menu choice or an input value which exceeds an
allowed range. When a routine encounters a non-fatal error it
simply returns without changing anything.

A typical fatal error occurs when the data in a newly
loaded CFG file is not consistent with data in the target pro-
grams configuration block. This could happen if the wrong
CFG file had been specified on the command line or during
development of a new CFG file. For fatal errors, ZCNFG
contains a list of error message exits, each of which prints an
error message and terminates ZCNFG by jumping to a com-
mon entry in the main EXIT routine which leaves the target
program unaltered. These fatal error exits are grouped to-
gether near the end of the ZCNFG source module.

The data structure at OFFSET, the fatal error exits, and the
standardized convention for the Carry Flag comprise the En-
vironment within which a function executes. Note that the

definition of environment is in terms of DATA passed to and
from the function. Service subroutines like MADC from
SYSLIB which sends a byte to the screen in DECIMAL radix,
are logically part of the function, not of the environment.

A Typical Function

Listing 2 shows the code for the new FN7. This function
rotates a bit from right to left in the configured byte. The
movement is restricted to a series of bits defined by the mask.
Thus, if the mask is 01111000, successive invocations of EN7

Listing 1. Data Structure Used by ZCNFG Functions

OFFSET: DS 2 ;address of configuration data
CFGD: DS 1 ;data byte for current function
S_ADDR: DS 2 ;address of current screen field
S_LIST: DS 2 ;address of string list or

;jmin/max data for current function.

might yield x000Ixxx, x0010xxx, x0100xxx, x1000xxx,
x000Ixxx, etc. The x positions in the byte are not affected;
they could contain other configuration data bits. The four bits
that are affected might be tested in the target program to, for
example, select one of four routines that display a date in 4
different ways. In this example ZCNFG requires (in the CFG
file) a list of four strings to display on the screen because the
field contains four bit positions. Each string would describe
one of the four date formats.

An algorithm is a set of instructions for performing a
computational task. It is usually stated in a high level lan-
guage so that it is independent of the exact coding techniques
of the implementation language. For fairly simple tasks, a set
of instructions in English is adequate. For more complex
computations, a pseudo-HLL language is more appropriate.
Such algorithms may look like an inexact version of C or
Pascal. I generally start a no trivial coding project with an
algorithm like those shown below, making comments out of
the steps and filling in source code after each step.

The following algorithm was used for writing IN_FN7.

1. Use the Mask to isolate the bit field.

Listing 2. A typical ZCNFG function

; FUNCTION 7

i ROTATE A BIT WITHIN A FIELD IN A BYTE

;entry points: IN_FN7 for user update

H LD FN7 for initial screen load

;The following data structure has been filled in from
;the current record in a Case Table from the CFG file

; (OFFSET:) = address of cfg data byte

; (CFGD:) = mask defining the field

; (S_ADDR:} = address of screen image field
; (S_LIST:) = address of list of strings
IN_FN7:

;Rotate the bit field in the configuration block.
;exit- byte at (OFFSET:) contains rotated field.
; Screen image is updated with a string

: corresponding to the new bit position.
; all registers used.
LD HL, (OFFSET) ;~>configurable data
LD E, (HL) ;data byte in reg E
LD A, (CFGD) ;bit field mask
LD B,A ;..in B
CPL jinvert it (logical NOT)

LD Cc,A ;.not. mask in €

CPL ;recover mask

AND E tisolate the bit field

RICA ;left circular rotate

1D D,A ;save rotated field

INC [

DEC C ;8 bit field?

JR Z,INFN7X ;..done if so

AND C ;test for overflow
;beyond field

JR 2,INFN7X ;z=no overflow

;a bit has shifted out of the high position
;of the field. The field is now all Os and
;the shifted bit belongs in the lsb of the field.

LD A,C ;synthesize a new field

RICA ; with lsb set

AND B ;remove all other bits

LD D,A ;savethe initialized field
INFN7X: LD A, (HL) ;jdata byte

AND C ;remove bit field and

OR D jreplace with rotated field

LD (HL) ,A ;hew data byte

1D A,D ;new field in A

JR LDFN7A ;«.for screen update

The Computer Journal / #53

2. Rotate the resulting byte left one bit position.

3. Use the inverted Mask to test for overflow outside the bit
field boundaries.

4. If overflow has occurred, create a new bit field with Isb
set.

5. Replace the bit field in the configuration byte with the

field from 2 or 4.

Update the field in the configuration block data

7. Use LD_FN7 to update the screen image, skipping over
the test for an illogical mask.

o

As the code was written, the algorithmic steps were para-
phrased and expanded in the comment field. Note the coding
strategy: the byte to be configured is stored in E. The mask is
stored in B and its inversion is placed in register C. The

_ rotated bit field is stored in D, where it can be easily replaced

in case of overflow (step 5).

Note the sequence INC C, DEC C’ to test for an 8 bit field.
C contains the inverse of the mask and will be all zero bits if
the field is 8 bits wide (the entire byte). This sequence is a
simple way to set the Z flag from any 8 bit register without
changing its value. If the value is zero then the RLCA instruc-
tion has properly rotated the byte and there is no overflow to
be concerned about. Otherwise, a bit may have been shifted
out of the msb of the field, leaving the field itself all zeros.

The first 8 lines of code in LD _FN7 establish HL as a
pointer to the data being configured, load the isolated
(masked) bit field into A, and perform an error check on the
mask byte. IN_FN7 has been designed so that, at the end of
step 6, HL and A contain the same two values. The entry into
LD _FN?7 skips over these first 8 lines because the mask check
is not needed; it was done during program initialization by a
call to LD_FN7. Those 8 lines are executed just once. We'll
have more to say about them later.

The algorithm for LD_FN7A..LD_FN7Xs:

1. Shift the bit field right until the Isb of the mask is at bit
position 0.
2. Get the pointer to the list of strings (S_LIST)
3. While <bit field Isb> is zero
Shift bit field right

Advance pointer to next string
End While
4. Copy the string to the screen image (at S_ADDR)

Advancing a pointer to the next null terminated string and
copying a null terminated string from one place to another
are tasks performed in many places in ZCNFG, so these tasks
were written as subroutines in a separately linked module,
CFGSUBS.Z80. It is typical practice to use subroutine calls for
common tasks; ZCNFG depends on subroutines from rel
libraries as well. To make use of such subroutines, the
programmer must become familiar with what is available in
each library (or linked module) and how to use each
subroutine. CEGLIB, written for ZCNFG, is accompanied by
a HLP file which explains how each subroutine is used and
what it does. VLIB, Z3LIB, SYSLIB, and others are similarly
documented. Studying such documentation carefully and
then using library routines saves a lot of coding and
debugging.

Did you try solving the problem stated at the beginning of
this article? It sounded a little theoretical, didn’t it? The obvi-
ous approach is to rotate the byte 8 times, counting 1 bits,
followed by a test of the count to see if it is less than 2. That
approach will work. It requires a loop (typically imple-
mented with DJNZ), a conditional jump around the code
which increments the counter, a compare statement, and
code to initialized the bit counter and the loop counter. Such
a routine can be written as a subroutine which takes about 17
bytes of code, including the RET statement. The cost in exe-
cution time is about 86 T-states. If you got it done in only
three in-line bytes, congratulations!

This problem was originally published in Dr. Dobbs
Journal about 10 years ago, but with an extra qualification
that made a real challenge of it. The code was to be three bytes
long! I didn't solve it. I had to wait for the next issue for the
answer. And ZCNFG is the first time [actually had use for it!
Here's the explanation and a little rationale for being aware
of such things. They are called ‘coding tricks’, but really are
methods of making best use of your CPU architecture and
instruction set. Lee Hart gives an excellent discussion of
performance oriented programming in TCJ issues 39 and 40

LD _FN7:

;Copy the string in the overlay corresponding

;to the bit set in the field to the screen image.
;This is the entry for MAPPER, during initialization
:The data structure at OFFSET: contains current data.
;exit- (normal) AF = 0,NZ,NC

; (error) program abort with message
; on bad CFGD byte.
1D A, (CFGD)

;test for illogical mask with less than 2 bits set

1D B,A ;save the mask byte
DEC A sinvert low order 0s and
;the first 1 encountered
AND B srestore 0's from original
;byte and set Zflag
;(NZ if 1’s remain)
JP Z ,BADOVL ;error if<2 bits in the mask
1D A,B ;restore original byte inA
1D HL, (OFFSET)
AND (HL}) :bit field at (HL) in A
LDFN7A:

;This is the entry from IN_FN7.
;shift bit field right to lsb position for indexing

The Computer Journal / #53

sentry- A = field from cfg data, masked
; B = mask for field data
H HL -> cfg data byte
BIT 0,B ;mask & data
;right justified yet?
JR NZ ,LDFN7B ;jyes, if nz
RRCA ;move bit field right
RRC B ;and also the mask
JR LDFN7A ;jand repeat
LDFN7B:
;index to the proper string in §_LIST
1D HL, (5_LIST) ;—>fielddata list for screen
LD C,A ;cfg field in C
..INDX: BIT 0,C ;1sb set?
JR NZ,LDFN7X ;use current list itemif so
CALL SKIP2%Z ;else skip tonext list item
RRC c ;and put next field bit in 1lsb
JR . .INDX ; «+and repeat
LDFN7X:
;copy S-LIST string to screen image
D DE, (S_ADDR)
CALL MOVE2Z ;copy null terminated string
XOR A jno error
RET

29

(July & Sept, 1989). This is highly recommended reading! But
Mr. Hart does not discuss this ‘trick’.

By now, if you've been reading the listing of LD_FN7, you
will have found the three bytes. They follow the “;test for"
comment line. Consider what happens when a byte is decre-
mented (subtracting 1 is equivalent but takes an extra byte).
Assume that the byte in A is 01111000, our first example.
When this byte is decremented, it becomes 01110111. Note
what has changed: all the (s at the right have become 1’s,
and the rightmost 1 has become a 0. Bits to the left of the
rightmost 1 are unchanged. If this result is ANDed with the
original byte, all the changed bits become 0, and the value of
the byte is determined only by the unchanged bits. If these
bits were originally 0, then the result will be 0. Figure 2 shows
three examples, one for a reasonable mask byte, and two for
illogical mask bytes. These latter two are illogical because the
mask byte specifies the size of the bit field to process; it
makes no sense to rotate a bit in a zero length field or in a
field of length one. Since the final AND adjusts the Z flag, a
result of NZ implies an acceptable mask and Z an invalid
mask. An invalid mask can arise from an error in writing the
CFG file or from a damaged file.

Error Checking

The current example illustrates a type of error that would
normally occur only when developing or changing a CFG
file: an erroneous value in a case table record. Such an error
could arise by forgetting to include an item in the record,
making it too short. Because such mistakes are hard to find,
the BADOVL error routine takes advantage of the table
driven nature of the SETOPT routine. BADOVL uses the in-
formation in MENLST and OFFSET to report the Menu and
Case table record number in which the error was detected.
Except for the remote possibility of a damaged file, the nor-
mal user of ZCNFG will never see this class of errors, but the
CFG file programmer will be thankful when they don't occur
and grateful when they do!

Exit

Some of the concepts important to structured programing
have been illustrated with the implementation of a major
function in ZCNFG. We saw that the environment of a
program structure comprises Data Structures, register usage,
subroutines both local and from other modules, and error
handlers. The environment is more commonly referred to as
the Interface of the routine with the rest of the program. Data
flow analysis was introduced and is a basis for the

Figure 2. Typical Mask Byte Testing.

Good Mask Bad Maskl Bad MaskoO
A 01111000 00001000 00000000
A-1 01110111 00000111 11l11111
A & A-1 01110000 00000000 00000000

Algorithm(s) that describe the final goal of the AL code.
Much of this is familiar to HLL programmers; such struc-
turing is a major goal of High Level Languages. What is to be
learned from the simple coding problem? Probably that there
is usually more than one way to implement the solution to a
problem, and that other solutions might be more efficient (or
even more elegant!). Here we also saw a subtle emphasis
shift in our view of one of the CPU instructions: what was
viewed as an arithmetic operation is really a specialized logic
function which can be used to advantage. INC and DAA
may also be viewed as logical operators and might have
some clever uses. Can you think of others?

I hope you have become convinced that you, too, could
program a function for ZCNFG. Want to try? Take a look at
Function 6 (parse/deparse all or part of a filespec). It cries
out for a re-write! Or make a new function whose purpose is
to configure a printer control string. At the very least, use the
techniques of structured programming to make your pro-
graming efforts more elegant and rewarding. There’s nothing
like clean source code when it comes to the inevitable debug-
ging or enhancement of your program.@

%

Reader, from page 2

Frankly, I'd feel pretty silly not extending the trial subscription
offer to “chaps like you.” I was a chap like you—spent twenty-six
Years in the tropics. Ever hear of Truk? Ponape? Palau?—Ed.

I became aware of TCJ through the Usenet newsgroup
comp.lang forth. The articles that show up there periodically
mention your magazine. [t seems to be of a similar flavour to
the late lamented Micro Cornucopia and also of early Byte.

I like this “older style” of magazine. It tells you how to get
stuff done with what you've got instead of forking out big
bucks for someone else’s solution.

D.C, Ottawa ONT

You have the basic idea. Not much money in putting out a rag
this way, which explains why others aren’t doing it. Most of the
industry has outgrown its roots.—Ed.

I appeal to Z-programmers to enforce CP/M compatible
programming. An example: implementing a fixed environ-
ment array near the beginning of a file and to set the address
at 109H, so that in a non-Z environment this fake environ-
ment would be used.

30

Second, | thought to bring the use of semigraphics to own-
ers of poor terminals as well. The way to go would be to use
a dummy graphics on/off sequence (or omit it totally) and to
use “+” and “-” for Graphic Character replacements. This
would certainly open truly portable graphical programs to
everybody. It would mean reworking the Z3TCAP.TCP to
this standard for all terminals, and then leaving it up to
individual users to soup them up to the real stuff, except for
those extended TCAPs already known.

Also I'd like to see a remake of TCMAKE, (which used to
work nicely in the old days of simple terminals), that would
create the new standard: TCAPs compatible to VLIB 4D
menu-driven, so a typical Auto-Install-Z-system-user can do
this himself!

H.]., Ismaning Germany

You will appreciate Jay Sage’s topic this issue.—Ed.

I have been a journal reader now for about two years or
more. | enjoyed it very much before, but | must say that |
enjoy it even more, now. Your new ideas, perspectives and
format are very good and [look forward to each edition. The

See Reader, page 44

The Computer Journal / #53

The NZCOM I0P

A General-purpose IOP Loader Module

By Terry Hazen

When an 10P REL module is loaded into the NZCOM IOP
buffer by NZCOM or JetLDR, you have no way to configure
the IOP module. The only way its configuration can be
changed is to modify the source code and reassemble and
relink it.

This time, we’ll look at IOPLDR, a small general-purpose
IOP loader REL module that does most of the standard work
that it takes to load, control and remove an IOP module. It is
combined with an 10P REL module and some 10P module-
specific routines to create a stand-alone COM file that will
load, contro! and remove the IOP module and allow the [OP
module to be configured by ZCNFG before loading.

We'll demonstrate IOPLDR by using it to create the stand-
alone IOP clock display utility I0PCLK.COM. IOPCLK
provides the 10OP clock-specific routines and messages
needed by IOPLDR as well as the configuration area for use
by ZCNFG. It also takes care of automatically finding the
ZSDOS clock driver address at run time. Keep in mind that
while IOPCLK is the specific example in this article, [OPLDR
is a general-purpose module. You may use it to create a
utility to load an IOP module you already have or a special
one you've always wanted to write.

JOPLDR is based on RSXLDR, a similar generalized RSX
" loader | wrote for HP14 and is similar to, but less specialized
than, the IOPLDR.REL module included in HP14. [OPLDR
also incorporates parts of several other utilities, including
Hal Bower’s SPEEDLDR.Z80. Portions of the code were de-
rived from Bridger Mitchell’s Advanced CP/M column on the
Plu*Perfect CP/M 2.2 RSX standards in TCJ 34 and the
word-wide relocator was derived from his column on reloca-
tionin TCJ 33,

IOPLDR is a generalized IOP loader module. It performs
preload checks, environment validation and relocates the IOP

module to the 10P buffer. It is called by a module-specific
IOP loader utility that contains all module-specific installa-
tion routines and messages. The actual 10 module is as-
sembled and linked to a PRL file and appended to the end of
the module-specific IOP loader COM file.

The IOPLDR module (Listing 1) and the loader utility,
IOPCLK (Listing 2), are closely related, like interlinked fin-
gers. Their relationship is also somewhat backward from the
way utilities normally work with the REL modules they call.
Here, IOPLDR contains all of the main routines and does all
of the standard work. It's IOPCLK’s job to provide all of the
special routines and information that allow IOPLDR to deal
with the specific requirements of the IOP clock module. In
fact, even though the name of the utility is IOPCLK, IOPLDR
is calling routines in IOPCLK rather than the other way
around.

IOPLDR

If you Jook at the IOPCLK code, you'll notice that the first
thing it does when it is run, is jump to IOPLDR, which then
takes control. IOPLDR starts out by doing all the mundane
and necessary things a utility usually does. It saves the sys-
tem stack pointer, sets a local stack, displays the sign-on ban-
ner and does some system checking to make sure it’s operat-
ing under ZCPR3 with an extended environment.

If the system passes muster, IOPLDR locates the start of
the PRL header for the IOP clock module that has been ap-
pended to [OPCLK.COM. $MEMRY is a word that the linker
fills in with the address of the next available byte of memory
after the last module used by IOPCLK has been loaded and
resolved. Since IOPCLK will be assembled and linked with-
out the 10P clock module PRL file, which will be appended
later, the $MEMRY pointer will help us locate the beginning

of the appended CLKIOP.PRL file.
we'll file the information away for fu-

Terry Hazen has a background in analog electronic and mechanical engineering.
He is currently a product design consultant, specializing in riedical electronic sys-
tems. He encountered his first computer in the 1960’s and got very frustrated
trying to write small punched-card batch-processed ALGOL programs. He got his
first Z80 computer in 1982 and has been pursuing 280 hardware and software
projects ever since. His company, n/SYSTEMS, produces the MDISK 1 megabyte
add-on RAM disk for Ampro LB computers. MDISK also provides the Ampro with
bank-switching capabilities for operating system expansion. Terry enjoys designing
and building varied types of hardware and software projects, not all of them com-
puter-related. His recent software projects include the HP and HPC RPN calcula-
tors and the REMIND appointment reminder utility as well as upgrades to his
SCAN text file viewing utility and ZP file/disk/memory record patcher. He may be
reached by voice at (408)354-7188 or by message on Ladera Z-node #2. His address

is 21460 Bear Creek Road, Los Gatos, CA 95030.

The Computer Journal / #53

ture use and then locate and save the
I0P module information we’ll need for
relocation later on.

Now that we know where to find
the IOP module, we can get and save a
pointer to its name so that we can use
it in the help message. Only then do
we check to see if help has been re-
quested. When a help message is re-
quested, you'll notice that the help
routine, MHELP, displays several
module-specific strings that are located
in the calling utility, IOPCLK. IOPCLK
contains MDESC, the description of the
IOP module. The description for

31

NENE NB Me mE NE N we we e we we e e

~e e we

~e e e

Listing 1

Module: TOPLDR

Author: Terry Hazen

Date: 06/07/91

Version: 1.1

Note: IOPLDR conforms to Joe Wright’s Standard Z-System

I/0 Package structure, version 4.0, May 4, 1989. IOPIDR is
based on RSXILDR, which incorporates parts of several
utilities, including Hal Bower’s SPEEDLDR.Z80 and parts of
the loader portion of my own HPRSX.Z80. Portions of the code
were derived from Bridger Mitchell’s Advanced CP/M column in
TCJ#34, p30 on the Plu*Perfect CP/M 2.2 RSX standards and
the word-wide relocator was derived from his column in
TCJ#33, pl4 on relocation.

bell equ 07
1f equ 10
cr equ 13

fcb equ 005ch ; Default File Control Block
cndbuf equ 0080h ; Command buffer

;

; IOP offsets

i

oiopid equ 35h ; Offset to IOP name

We need to use these SYSLIB routines:

.request
ext

syslib
cout,eprint,epstr,phldhc,compb, $memry

Let the target IOP loader utility use our routines:

IOoP

public iopldr 7 Main IOP loader entry point
public uname ; Displays leading spaces,
; the name of the IOP loader
; utility and any trailing
; message
public mname ; Displays the name of the
; module and any trailing
; message
; Address pointers:
public iop ; local IOP module
public nziop ; NZIOP buffer

e we me me we o ws wa N

MCFG - Module-specific IOP configuration routine in local
memory. Run after the IOP has been relocated and before the
internal IOP install routine is run. Does all module-
specific IOP configuration.

Entry: HL=IX=address of loaded IOP

Exit: Z set if error
Uses: IX,IY must be preserved
ext mcfg

MINST - Module-specific IOP install routine in local memory.
Run after the IOP is relocated and the internal IOP install
routine has been run. Does all module-specific installation.

Ne s Ne we we e

Exit:
ext

minst

Entry: HL=IX=address of loaded IOP
Z set if error

mhelp: call eprint
db ‘Installs and removes the IOP module for the’
db cr,lf,’ 4,0
call mname ; Display module name
; and description
db 0 ; No trailing message
;
1d hl,mdesc
call epstr ; Display module description
i
call eprint
db ‘.’ ,cr,lf
db ‘Syntax: ’
db cr,lf,0
H
call uname
db ‘ Install ‘,0
call mname
db ‘ IOP module’
db cr,l£,0
H
call uname
db ‘R Remove IOP module’
db cr,lf,0
i
call meml ; Display any special commands,
ip mldmsg ; loaded IOP commands and
quit

~ e we

Main module entry

: iopldr: 1d (stack},sp
; Module-specific msgs located in target IOP loader utility: 1d sp,stack
; 1ld hl,exit ; Put exit address on stack
ext - name ; Loader utility name push hl
ext mdesc ; Module description for H
; help screen. ; Display program name, then move down one line and in 4
H ; spaces, ready for the display of common messages.
; Module-specific routines located in target IOP loader ;
; utilitys banner: 1d hl, name ; Point to name string
H call epstr ; Display it
ext mecml ; Displays any special call eprint
; command line help db cr,lf,’ ‘,0
ext mldmag ; Displays any special load ;
; message after load address 14 ix,(109h) ; Get environment address
; is displayed 1d a, (ix+3) ; First characterof ID string
; cp 'z’
; MPARS - Parse cammand line. Any IOP special command line jp nz,notez ; Not Z-system, so quit
; parsing, system checks and command routines can be done H
; with this routine. 1d a, (ix+8) ; Get Z3ENV Type in A
i Entry: HL=FCB+1 rla ; Rotate bit 7 to carry
i Exit: CARRY set if error - quit without doing installation jp nc,notez ; Quit if not extended ENV
H 2 set if system checks OK, but no parsed commands ;
; found, check for bad command before installing IOP 1d 1, (ix+24h) ; Get EFCB address in HL
H NZ set if system checks OK and parsed command found, ld h, (ix+25h)
; IOP can be installed without further checks id a,h
ext mpars or 1 ; Check for existence
jr z,getprl ; No
i H
32 The Computer Journal / #53

IOPCLK is ‘Video Clock IOP’. MHELP can also display any
special loader utility commands and loaded IOP commands
located at MCML and MLDMSG respectively.

At MCML (in IOPCLK), we find a description of the ‘D’
option, which controls the IOP clock’s display format. In this
case, IOPCLK doesn’t need a message at MLDMSG, so it
simply returns. In more complex IOPs, the message at
MLDMSG can display commands that can be executed by the
_loaded IOP. The Alpha Systems RECORDer IOP, for ex-
ample, has commands that allow you to turn the recording
functions on or off and allow you to specify the names of the
files to which the console and list output are being written.

If no help has been requested, we can now get the address
and size of the NZCOM I0P buffer from the environment
and make sure it exists and that it is big enough for our IOP
module.

Removing the IOP Module

Now we can parse the command line and see if we are
being asked to load or remove our 10P clock module. If
we're removing it, we only have to make sure that the cur-
rent IOP module has the same name as ours. If it does, we
deselect it by calling the SELECT routine in the I0OP with
B=0FFh. We can then tell the user that the module has been
removed and quit. Even though it's probably not absolutely
necessary, we do the name test to make sure that each 10D
module is removed by its own utility just in case there’s
something special about it or about its removal process.

Loading the IOP Module

If we're not being asked to remove the IOP module, we
call MPARS in IOPCLK to parse the command line for any
special commands and do any special system checks we
might need. In our case, we want to check to make sure we
have a working ZSDOS/ZDDOS system clock. We first use
the extended DOS ID call 48 to make sure we are operating
. under ZSDOS or ZDDOS. If we are, we make sure we have a
clock by using the DOS 98 call to do a trial clock read.

If the user has requested that we install the IOP, we copy
the IOP module to the 1OP buffer and using the PRL bitmap,
relocate it in place by adjusting the module addresses to re-
flect the move (see Bridger Mitchell's Advanced CP/M column
in TCJ 33 for more information on relocation).

Now that the module is in place, we call MCFG in
IOPCLK to do any module-specific configuration that may
be required. In our case, we need to find and save the loca-
tion of the ZSDOS clock driver and we need to move the
configuration buffer from the start of [OPCLK.COM to the
loaded 10P clock module.

Like all good 10P loaders must, we then call the initializa-
tion routine in the IOP module. Before we can quit, we call
MINST in IOPCLK to do any module-specific initialization.
In our case, none is required. We then display the address of
the 10P buffer and finally, call MLDMSG in 10PCLK to dis-
play any special load message our module might require.
IOPCLK doesn't require anything special, so we're done. Our
IOP is loaded, configured and running until we remove or
replace it.

Configuring the IOP Module

If you chose to load CLKIOPREL with NZCOM or
JETLDR, you had to add all the configuration information to
the CLKIOP source code before you assembled it to a REL

The Computer Journal / #53

file. This means, of course, that you'll have to change and
reassemble and relink the source code each time you want to
change the configuration. To make configuration easier and
more flexible, there is a configuration buffer at the beginning
of IOPCLK.COM. This buffer can be configured with
ZCNFG and is copied to the IOP module configuration
buffer after the module is loaded into the IOP buffer.

You can configure the IOP clock module to sound an
alarm every hour, to display the time as hhimm and update
the display every minute or to display the time as hh:mm;ss
and update the display every second, and to display the time
in 12 or 24 hour format. This is also where you must specify
the special terminal control sequence that is required to place

the clock display in the terminal’s host computer message
field.

Producing IOPCLK.COM

We can now assemble and link IOPCLK.Z80 with
IOPLDR.REL and SYSLIB to make IOPCLK.COM. Note that
IOPLDR.REL requests the required SYSLIB routines, which
are public:

2ZMAC TOPCLK;ZML IOPCLK

We need to have the CLKIOP module available as a PRL
file, which contains the bitmap that we need in order to relo-
cate it (see Al Hawley’s Getting Started in Assembly Language
column, TCJ 50). First we assemble CLKIOP.Z80 to a REL
file and then link it to a PRL file:

ZMAC CLKIOP;ZML CLKIOP /P

We can then use CONCAT with the binary-append op-
tions to append CLKIOP.PRL to the end of IOPCLK.COM to
produce our final stand-alone 10P clock utility:

CONCAT IOPCLK.COM=CLKIOP.PRL /OA

You can now run [OPCLK to load the IOP clock module.
You can also use it to remove the [OP module and to change
the display from 12 to 24 hour time.

You can find the full source and documentation for
JOPLDR in IOPLDR11.LBR on your favorite Z-Node. 1 hope
IOPCLK and IOPLDR will give someone an idea that will
soon lead to a new and innovative IOP module showing up
in these pages!®

@ TCJ On-Line)
Readers and authors are invited to join in dis-
cussions with their peers in any of three on-line
forums.

+ GEnie Forth Interest Group (page 710)

+ GEnie CP/M Interest Group (page 685)

+ Socrates Z-Node 32

For access to GEnie, set your modem to half
duplex, and call 1-800-638-8369. Upon connec-
tion, enter HHH. At the U#= prompt, enter
XTX99486,GENIE and press RETURN. Have a
credit card or your checking account number
handy.

Or call Socrates Z-Node, at (908) 754-9067.
kPC Pursuit users, use the NJNBR outdial. J

33

inc hl

1d de, name
1d be,8
ldir

H

getprl: 1d hl, ($memry)
1d a,l
or a
jx 2,8tart2
cp 80h
jr 2,start2
add 80h
jr nc,startl
inc h

;

startl: and 80h
1d l,a

start2: push hl

inc hl

1d e, (hl)

inc hl

1ld d, (hl)

ld (size),de
H

pop hl

inc h

push hl

pop iy

1d (iop),hl

1d de,oiopid

add hl,de

1d (iopid),hl
’

1d hl, fcb+2

1d a, (hl)

cp VAl

ip z,mhelp

Get the IOP buffer address

~e w. o~

getiop: 1d 1, (ix+15)
1d h, (1x+16)
1d (nziop),hl
’
ld a, (ix+17)
or a
ip 2,noiop
H
rra
1ld h,a
1d 1,0
1d (iops),hl
or a
id de, (size)
sbc hl,de
ip c,smiop
module
’
1d hl, fcb+l
1d bec, 8
1d a, 'R’
cpir
jr z, Yemove
’
1d hl, fcb+l
call mpars
ret c
jp nz,install
!
1d hl,fcb+l
1d a, (hl)
cp vt
ip z,install
ip mhelp

Remove IOP module

- v

~ o

e ow

~e

N e

~ ne o= - -,

~e o~

~ e

T R T ~

~ wrowe

Point to first name byte
Move name to our buffer

Get end of code
Find start of PRL header

HL=PRL header
Point to PRL size

Save PRL size

HL=PRL header
HL=IOP

HL=IY=local IOP module

Hl=address of IOP name
Save it

Check for help request

Help request?
Display help screen

IOP buffer address in the
environment

Save IOP buffer address

Get IOPS size in records
Check for zero
Quit, no IOP

*80h
Hl=size

Save it
Clear CARRY
Size of IOP

IOP too small for this

Parse command line
Scan name field
Check for ‘R’emove

Yes, remove IOP

Parse command line

Do any special parsing and
routines

Error, so gquit

Ok to install IOP

Point to command tail
Any command tail?

No, OK to install IOP
Yes, must be bad command

.
’

remove: ld
d
add
1d
1d
call
jr

1d
call
jr

~

call
db
ret

call
db
ret

notsam: call
db

~

1d
push
call

~

~ we owa

select: 1ld
1d
add
ip

i
;
; Copy the IOP module to the IOP buffer
V

install:ld
1d
push
push
push
push
1d
ldir
call
pop
pop
call

ret

pop
1d
add
call
routine

r
pop
call

ret

call
db
1d
call

ip

~ e we

exit: 1a

Call IOP module SELECT routine

Main exit point

hl, (nziop) ; Get IOP buffer address
de,oiopid ; Offset to IOP name
hl,de ; HL=IOP name

de, (iopid) ; DE=our name

b,8

compb ; Same?

nz,notsam ; No, don’t remove
b,0fth ; Deselect IOP
select

2 ,nosel

mname

‘ IOP module removed’,cr,lf,0

eprint
‘I0P select function not supported’,cr,lf,0

eprint
‘Remove current IOP module ‘,0

de, rmsg
de
pnso ; Display name

‘ with its own utility.’
cr,lf,0

hl, (nziop) ; Get IOP buffer address
de,3 ; Offset to IOP SELECT
hl,de

(hl) ; Call IOP SELECT

hl, (iop) ; HL=local IOP module
de, (nziop) ; DE=loaded IOP buffer
de ; Save 4 copies
de
de
de
bec, (size) ; Length of IOP-bitmap
s Move the module
reloc ; Relocate the code
hl ; Restore loaded IOP pointer
ix ; HL=IX
mcfqg ; Do module-specific
; configuration
2 ; Configuration error
hl ; HlL=loaded IOP buffer
de, 9 ; Offset to IOPINIT
hl,de
jphl ; Call the IOP install
hl ; Restore loaded IOP pointer
minst ; Do module-specific install
; routine
2 ; Installation error
mname
! I0P module installed at ’,0
hl, (nziop) ; Get IOP load address
at ; Display load address
mldmsg ; Display module-specific
1

load message

sp, (stack)

34

The Computer Journal / #53

BError returns:

No extended Z-system present

N me we we we

notez: call eprint
db ‘Requires ZCPR3 system with /
db ‘extended environment!’
db cr,1f,bell,0
ret ; And quit

i

; No IOP present

i

noiop: call eprint
db ‘No IOP buffer!',cr,lf, bell,0
ret ; And quit

7

; IOP buffer toc small

i

smiop: call eprint
db +I0P buffer is too smallt’,cr,lf,bell,0
ret ; And quit

Patches IOP addresses after IOP has been loaded to high

H
H
; Bridger Mitchell's word-wide PRL relocator (TCJ#33 pl4).
i
; memory. Bitmap remains in local memory.

7

reloc: 1ld a,i ; Save interrupt vector in
AF’
ex af ,af’
di ; Disable interrupts while we
; use stack
H
1d ix,0 ; IX=zero
add ix,sp ; Save stack pointer in IX
I
1d hl, {nziop) ; Relocation address
push hl
exx
pop de ; Set DE'=base address of
code
dec d ; Compensate for 100h org in
; PRL file
exx
H
id sp,hl ; SP=start of code - 1 byte,
dec sp ; since we need to mark high
; byte
]
1d hl, (iop) ; Start of local IOP module
1d bc, (size) ; Length of relocated code
add hl,bc ; HL=bitmap
1d e,l ; Init the rotation byte,
; which will set CARRY every
; 8 bytes
7
rloop: 1ld a,b ; Check byte count
or c
jr 2,rdone ; Done
H
dec bc ; Reduce byte count
rrc e : Set CBRRY every 8 bits
jr nc, rsame ; Not set
H
1d d, (hl) ; D=next byte from bitmap
inc hl ; Advance bitmap pointer
r
rsame: rlc d ; Shift bitmap byte into CARRY
jr nc, noof : No relocation needed
H
exx
pop hl Get word to relocate from

~ ~

stack

add hl,de ; Relocate by DE'=load
address
push hl ; Put it back
exx
H
noof: inc ap ; Point to next byte of code
jr rloop ; And deal with it
r
rdone: 1ld 8sp,ix ; Restore the stack
ex af,af’ ; Restore interrupt vector
ret po ; Interrupt was DI, so skip
; enable
ei ; Otherwise enable interrupts
ret

Display the IOP module name and thetrailinginline message.

mname: push hl ; Save message pointer
1d hl, (iopid) ; Point to name
ir pns$o ; Display it

Display 3 leading spaces, the

inline message.

filename and the trailing

P

uname: push hl : Save message pointer
1d b,3 ; 3 leading spaces
1d a,’” !
i
splp: call cout ; Display the spaces
djnz splp
1d hl,name : Point to our name buffer
pn$0: 1d b,8
1
pn$loop:ld a,(hl) ; Get byte
or a
jr 2 ,pn$dun ; Quit at 0
1
inc hl ; Point to next character
and 07fh ; Filter high bit
cp ‘o
ir 2,pn$dun ; Quit at first space
call cout
djnz pn$loop
i
pn$dun: pop hl ; Restore message pointer
jp eprint ; Display trailing message

i
; Display hex load address, start
H

new line.
at: call phldhc
call eprint
db ‘H',cx,1£,0
ret
§ e
; Call (HL)
H
jphl: Jp (h1)
7
7
1

iop: ds 2 ; Start of local IOP module
size: ds 2 ; Size of PRL
nziop: ds 2 ; Start of NZIOP buffer
iops: ds 2 ; Size of IOP buffer
iopid: ds 2 ; Address of local IOP name
;

ds 48 ; Local stack
stack: ds 2 ; System stack pointer

end

~e =

End of IOPLDR.Z80

“There are a lot of lies going around.... and half of them are true.”

The Computer Journal / #53

—Winston Churchill

35

Listing 2

; Module: IOPCLK

; Author: Terry Hazen
; Date: 06/07/91
; Version: 1.0
§m—————

i

; Equates

i

off equ]

on equ Offh
bdos equ 5

bell equ 7

1f equ 10

cr equ 13

esc equ 27

equ 10

i
; Entry points for module-specific addresses and routines
; required by the IOPLDR module:
;
public name,mdesc,mcml,mldmsg,mpars,mcfg,minst

From IOPLDR we need:

~ o~ e

.request
ext
ext

iopldr
iopldr,iop,nziop,uname
cout ,eprint,phl4hc, Smemry

ip iopldr ; IOPLDR does all the work
db ‘Z3ENV’ ; ZCPR3 Utility
db 1 ; Type 1
z3eadr: dw 0 ; Z3ENV address provided
; by Z2CPR33+
dw enter ; ZCPR34 pad bytes
I
db *IOPCLK’ ; Default CFG filename
db mvers/10+'0' ,mvers mod 10+'0’
; 8 characters total
db 0 ; Termination

IOP Configuration area - copied to IOP module at load time

MDESC is a zero-terminated description of the module
function that is displayed after the module name in the
command line help screen.

Ne mi we we we

mdesc: db ! Video Clock IOP’,0

;
i
; MCML is displayed after the command line help screen to to
; allow the display of extended command line commands.

1

mcm) 3 call uname
db ‘D Toggle time display between *
db ‘(hh:mm) and (hh:mm:ss)’
db cr,lf,0
ret

MLDMSG is displayed after IOP load/exists messages to allow
the display of IOP commands.

~e we o we we

mldmeg: ret ; No message required here

MPARS does any required special command line parsing, system
checks and execution of commands other than install and
remove.

Entry: HL=FCB+1

Exit: CARRYSET forerror requiring exit without installing
IOP Z set if system checks ok but no command found. Look
forbad cmd. NZ set if system checks ok and command found.
Install IOP.

we mh I wE we we N e Ne W wa

mpars: push hl ; Save pointer
1d c,48 ; Extended DOS check
call bdos
1d a,h
cp ‘st ; Must be 2ZSDOS
jr z,clkchk
cp ‘Dr ; Or ZDDOS
jr z,clkchk
H
call eprint
db 'ZSDOS/ZDDOS required!’,cr,lf,bell,0
jr erret

Check for good clock

~e me we

config:
beep: db on ; ON to beep every hour clkchk: 1d de,clock + Check for clock
seconds :db on ; ON to include seconds in 1d c,98 ; BDOS get time
; clock display call bdos
time: db on ; ON for 12hr time, inc a
; OFF for 24hr time jx nz,pars ; Clock present
zgclk: dw 0 ; ZSDOS clock driver address H
H call eprint
; Prefix to put clock display in terminal message line. The db ‘Can’’t read clock!'’
; prefix and termination character are completely terminal- db cr,1f,bell, 0
; dependant. This example is for the WYSE75: H
; erret: pop hl ; Discard pointer
term: db esc, ' [>+\’ ; Message prefix scf ; Set fatal error
ds 3 ; 8 bytes total ret
db [; Termination ;
; ; Parse command line
termend:db "\ ; Message texrmination character | ;
; pars: pop hl ; Restore pointer
spaces: db 22 ; Spaces to start of c¢lock 1d a,’'D’ ; Include seconds in display?
; display 1d bc,8 ; Scan name field
cfglen equ $—config cpir
===== jx z,tsec ; Found
i i
; IOPCLK-specific routines called by IOPLDR: xor a ; Set Z-check for bad command
jE==== ret
H H
; NAME is the zero-terminated loader name and version number tsec: 1d a, (seconds) ; Otherwise toggle
; for use in the banner. ; display flag
; cpl
name: db ‘IOPCLK vers * 1d (seconds) ,a
db mvers/10+'0',’.’ ,mvers mod 10+'0" jr good ; Set good return
db 0 ; Termination e ————
36 The Computer Journal / #53

MCFG - does all required special configuration of the IOP
module after it has been relocated into high
memory and before internal IOP initialization is

P T

; Entry: HL,IX=address of IOP buffer, IY=address of local IOP
; Exit: 2 set if installation error
H Nz set if ok

; Uses: IX, IY must be preserved.
mefg: exx ; Save IOP addr
1d hl, (109h) ; Get address of environment
1d de,b42h ; Offset to ZSDOS clock
driver
; address
add hl,de
call 1hlhl ; Get ZSDOS address
14 de,16h ; Offset to clock address
add hl,de
call 1hlhl ; HL=address of 2SDOS clock
; routine
1d (zsclk),hl ; Save it locally
1
exx ; Restore IOP address
ld de,52h : Offset to IOP config area
add hl,de
ex de,hl ; DE=loaded IOP config
address
1d hl,config ; HL=local config area
1d be,cfglen ; BC=length of config area
ldir

Entry: HL,IX=address of 10P buffer, I¥=address of local IOP
Exit: Z set if installation error
NZ set if ok
minst: ret ; Nothing special required

’

H
lhlhl:

1d a,(hl) ; Low order to A
inc hl
1d h, (hl) ; High order to H
1d 1l,a ; Low order to L
ret

§=====

;

; Data area

;

clock: ds 6 ; Initial clock read buffer
end

r

or
ret

on ; Set good (NZ) return

MINST - does all required special installation of the IOP
module after it has been relocated into high memory
and after internal IOP initialization is run.

Load HL with the two bytes it is pointing to

End of IOPCLK.Z80

-IIIllIIlIIlllIIIIIllIl-IIlIllIIIIllIllIIIIIl-IlIIIlllIIIlllIllIIII-IlIIIllIllIIlllllIIII-IIIIIIIIIIIIIIIIIIIIIIIII-

Computer Corner, from page 48

picture, text, drawing, and fancy graphics. It sure makes
me miss using a MacIntosh. Icons in and of themselves are
not the answer to easy use. In Mac machines, especially with
the release of version 7, the look and feel is so uniform, that
once a operation or technique is learned, you can use it in all
programs.

Contrast this to PC based windows programs and you can
easily see why the MaclIntosh is still best. When using a PC, |
have stopped using the mouse as it is too much work. Most
of the programs I have all use the mouse differently—no
standardization. Windows 3 added a more constant Jook and
feel, but at present it is still each programming shop to their
own way of doing things. I feel another 5 years from now
and maybe the PC world will reach the same level of user
friendliness that has been available on Macs for more than 5
years.

For Mac users or want-to-be-users you do not need to
spend lots of money. No | am not talking about price drops
but about other systems. A friend of mine just bought an
Amiga with a MAC adapter card. He has been able to run
almost everything available with better graphics and also
have regular Amiga programs as well. I plan on doing the
same here soon with my Atari ST. I think I can turn my 1
Meg machine into a Mac clone for about $300. Now I am not
positive about prices right now, but I think you could buy a
new Atari ST for say $1000 (color monitor). The Mac adapter
at $300 means an Atari/Maclntosh for $1300 total. Now this
is not getting you a classic model, but something closer to
their lls. For people who want to step up to 68K machines
and real user friendly software it sure beats the “real thing”.

Up Last

A last topic is industrial controllers. I was planning on
reporting on a new controller running Forth, but I haven’t

The Computer Journal / #53

received the information yet. The person is promising a
demo model so | feel strongly [should wait and give a more
complete accounting of the product later.

What I can report on is the flood of new products and
interest in this area. | have commented before how it seems
to be the last area for home grown production. Well it seems
that a lot of people are taking me at my words. I am sure the
number of small units available has never been greater. It is
possible to get everything from 8031 to the newest chip on
the market in something that fits in your hand.

If you are going this way a few words of advice. First off
do your homework. Find someone who needs the product
and work with them to get it going. This will help you shake
out all those little “oops” that can slip by so easily. Think
about your user and just what they need. Don’t forget what
level of knowledge your user may have. Make it a point of
building and testing everything you say the system can do.
Be able to prove beyond a shadow of doubt that it will work
as advertised. Lastly don't do it if you really don’t have the
experience and knowledge needed.

I receive several industrial trade magazines and have seen
lately talks about the dangers of poorly designed and tested
industrial controllers. The project | worked on years ago was
held up and changed several times due to concerns about
product liability. When designing the system knowing what
will happen if this or that fails may be the difference between
someone saving their life or losing it. These are not items to
be treated lightly or haphazardly.

Caution To the Winds
At this point I feel like throwing caution to the winds and
saying how next time I will have information for you that
you will wonder how you ever lived without it. But then |
also got a bridge to sell as well...have fun!!!!'®

37

Z-Best Software

Spotlight on Gene Pizzetta

By Bill Tishey

What a great time this is for anyone involved with Z-
System! The “team” of Z developers continues to fill the Z-
Nodes with new tools and refinements to existing utilities.

MS-DOS self-extracting (.EXE) ZiPfiles. 1 feel that this
column will serve its readers best if there are such questions
to guide it. Let me hear from you!

As you can see, the list of new and revised programs is even

Spotlight on Gene Pizzetta

Listing 1
New Releases:

Gene provides us four new tools
and updates to three others. As you
read the following paragraphs, one

CFG=Y

CMAZE.COM 1.80 00

HLP=Y which exist only in the first.

5YS User-modified version of AMPRO CONFIG 2.6 utility to allow correct
HLP=N operation under both CP/M and NZCOM.

28 220 D2AD CMAZE18
SYS MBASIC/BASCOM game which uses Z-System TCAP data. Creates a maze of
HLP=N walls and asks you to position a ball in the maze. Data entry is
CFG=N best done with ZEX scripts. Uses Z3BAS library of routines.

CPD.COM 1.00 0 V211 4 29 83Dl CPD10
DIR Compares two directories and indicates which files exist in both and

Allows setting of archive bit on
CFG=Y those files which exist in both directories.

FILT.COM 0.80 (U] 4 30 9588 FILTS

Name Vers S ZSUS Siz Rec CRC Library/Size Issued Author thing should be obvious—Gene's con-
tinuing work with program support
CFGZ .COM 1.00 00 6 47 F829 CFGZ10 5 05/03/91 Terry Hazen for ZSDOS and datestamping in gen-

eral.

CPD vs 1.0 (ZSUS Vol 2 #11)

Gene’s ComPare-Directory utility,
CPD, was an idea derived from CDIR
vs 2.0 (by Rob Wilcox and Richard
Brewster) and the result of some
prompting from Howard Schwartz.
See Figure 1 for CPD’s syntax.

CPD compares two directories and
indicates which files exist in both
directories and which exist only in the

39 09/16/91 Lee Bradley

21 08/10/91 Gene Pizzetta

23 09/13/91 Gene Pizzetta

WP ZCPR3 rework of Irv Hoff’s FILT7 tool which sets or expands tabs and
HLP=N removes several types of unwanted characters in ASCII text, WordStar
CFG=Y documents or assembler source code files.

JUST.COM 1.20 00 4 31 548B JUST12 40 09/13/91 Gene Pizzetta
WP ZCPR3 rework of Irv Hoff’s tool to justify ASCII and WordStar text
HLP=N files. Full command-line operation, DU support, error-flag setting,
CFG=Y quiet mode, and transfers create datestamps under 2SDOS.

tirst directory. If no option is given, all
matching non-system files in the first
directory are displayed with files
marked which also exist in the second
directory. The duplicated files are
marked in standout video (if supported

by one’s TCAP) and by an asterisk

longer than that of last issue! This, however, makes my job as
this columnist even tougher. Due to the limited space here,
it’s impossible to cover everything in detail. What | would
like to do each issue is provide some encapsulated reports on

what is new and improved.
Sometimes, as in this issue, I may focus
on the contributions of a particular
developer. In addition, however, 1|
would like to highlight some programs
of your choosing. Drop me a line
(either directly or through the editor)
with any programs which you’d like to
see discussed. Maybe you want to
know more about LSH, Rob Friefeld’s
command-line editing shell. Maybe
you'd like to see some applications for
Terry Hazen’s ZFIND utility. Maybe
you're looking for a good file-compare
utility, or something that will unZIP

38

following the filename. The asterisk

has the added function of allowing visible markings in
printer output.

CPD’s options allow 1) display of only those files which

exist in both directories, 2) display of files in the first direc-

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft's Softcard CP/M for his three-year-old Apple 11+.
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “manual in-
stall” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple 11+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software. Bill is the editor of
the Z-System Software Update Service and has compiled such offerings as the
Z3COM package and the Z-System Programmer’s Toolkit. Bill is a language analyst
for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay
Sage's Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-
ern, MD 21144.

The Computer Journal / #53

LOCNDOPT.HEX 1.00 00 1 3 8FBS5 LOCNDOPT 3 08/01/91 Bruce Morgen
PROG4 Patch to LOCNDO.IOM vs 1.2 which adds 1) Z3 extended ENV drive vector
HLP=N support, 2) “//" help query and 3) proper trap if no valid ENV.

CFG=N

MKZ3BASE.COM 1.00 00 2 9 241E MKZ3BASE 5 22/22/91 H. zur Nedden
PROG Builds a Z3BASE.LIB by reading the current values for the equates
HLP=N from the environment descriptor.

CFG=N

SSORTPAT.Z80 1.00 0 0 2 9 AD42 SSORTPAT 2 08/23/91 Bruce Morgen
PROG4 Patch for MicroPro SuperSort v1.60 (SORT.COM) to allow multiple
HLP=N SuperSort commands under 2CPR33+ (including BGii 1.3x, N2ZCOM, Z3PLUS)
CFG=N from the system prompt or in Z-System aliases and other scripts.

TYPELZH.COM 2.00 co 7 54 191C TLZH20 60 07/27/91 Roger Warren
LBR Types LZH-encoded, Crunched, and Squeezed files. Based on TYPELZ.
HLP=N Vs 1.0 (8/15/8%) by Roger Warren.

CFG=N

TYPELZHR.COM 2.00 co 7 54 B980 TLZH20 60 07/27/91 Roger Warren
LBR See TYPELZH.COM. For R/CPMs with wheel at O03EH.
HLP=N
CFG=N

WINDWLIB.REL 1.00 00 6 47 ASD2 WINDOW10 18 04/29/91 W. Schmitten
PROG3 Routines which allow use of up to 15 windows on (any) CP/M computer.
HLP=N
CFG=N

XRUN-ENG.COM 2.50 0 O 4 25 45BC XRUN25 38 02/28/91 Olaf Krumnow
SYs An ECP for ZCPR33. Looks for files along the search path and
HLP=N constructs a cammand line depending on the extension of the file
CFG=N found. Supports shell variables.

ZBIB.COM 0.50 00 8 64 529C ZIBIBOS 23 09/15/91 Joe Mortensen
7?DBASE Bibliographic database manager based on ZDB.
HLP=Y
CFG=Y

ZTIME+.COM 1.30 00 4 27 F6B4 ZTIME13 25 09/11/91 Gene Pizzetta
DATE See ZTIME.COM. Z3PLUS version.
HLP=N
CFG=Y

ZTIME.COM 1.30 00 4 27 7E7B 2TIME13 25 09/11/31 Gene Pizzetta
DATE A hardware independent clock utility for setting or displaying the
HIP=N date and time under 2ZSDOS or Z3PLUS. Options include the ability to
CFG=Y measure elapsed time. ZSDOS version.

Listing 2
Revised Programs:

Name Vers S ZSUS S5iz Rec CRC Library/Size Issued Author

CFGLIB.REL 1.00 4 v212 2 10 E955 ZCNFGLlS 109 08/21/91 Al Hawley
PROG3 Library of routines used to link .CFG configuration files used by
HLP=Y 2ZCNFG.COM.

CFG=N

DATSTP-P.30M 1.70 3 0 5 39 33CS DATSTPL7 64 08/30/91 Gene Pizzetta
DATE See DATSTP-U.COM. For Z3PLUS only. Type 3 at 8000h.
HLP=Y

CFG=Y
DATSTP-P.40M 1.70 4 0 6 46 3A31 DATSTP1l7 64 08/30/91 Gene Pizzetta
DATE See DATSTP-U.COM. For Z3PLUS only. Type 4.
HLP=Y
CFG=Y
DATSTP-P.COM 1.70 0 O 5 39 690C DATSTP17 64 08/30/91 Gene Pizzetta
DATE See DATSTP-U.COM. For Z3PLUS only.
HLP=Y
CFG=Y
DATSTP-U.30M 1.70 3 0 6 44 EE45 DATSTP17 64 08/30/91 Gene Pizzetta

DATE See DATSTP-U.COM. Universal version (ZSDOS, ZDDOS and 23PLUS).
HLP=Y Type 3 at 8000h.
CFG=Y

The Computer Journal / #53

tory which do not exist in the second,
and 3) setting the archive attribute on
those files which exist in both directo-
ries, facilitating copying those that do
not.

FILT vs 8.0, JUSTvs 1.2

Gene has reworked several of Irv
Hoff’s text-handling utilities for ZCPR.
FILT8 is an update to FILT7, Irv’s
widely-used CP/M tool which sets or
expands tabs and removes several
types of unwanted characters in ASCII
text, WordStar documents, or
assembler source code files. JUST12 is a
reworking of Irv’s JUSTIFY tool which
justifies ASCII and WordStar text files
(see Figure 2 for their syntax). Both
tools are now command-line driven,
provide DU and DIR support, error
flag setting, error handler invocation,
quiet mode and ZCNFG configuration.
Under ZSDO$S and ZDDOS, both will
preserve file create date stamps.

As Gene puts it, the hardest part in
converting FILT7 and JUSTIFY was
“deciding how to make the variously
interactively chosen modes into a
group of logical command-line
options.” In FILT8, mode options are
provided for use with source code (S),
ASCII text (A), WordStar documents
“without” dot commands (W), and
WordStar documents “with” dot
commands (D). In JUST12, options
allow for justifying lines starting with a
space (S), for justifying lines regardless
of their original length (L), and for
retaining embedded form feeds. Both
tools also have a quiet mode option
(Q). FILT8 and JUST12 are a welcome
addition to the word-processing/text-
handling toolset and, if Gene had not
intended it so, are also a fitting

reminder to us all of the legacy of Irv
Hoff.

ZTIME vs 1.3

ZTIME is a new, hardware-
independent clock utility for setting or
displaying the date and time under
ZSDOS or Z3PLUS. See Figure 3 for its
syntax.

Date and time entry with ZTIME is
simplified by a syntax which allows
missing elements to be filled in from
the current setting of the clock. Thus, if
you want to change the hour, say to
daylight saving time, you need only
type “ZTIME hh:". To adjust the min-
utes, type “ZTIME :mm”, or to set the
seconds, type “ZTIME :ss”. A unique
feature of ZTIME is its ability to meas-

39

Figure 1
CPD Version 1.0
Usage:
CPD {(dir:}{afn} {dir:} {{/}options}
Displays files in first directory, marking files
that are duplicated in second directory.
Options:
display only files in both directories
display only files missing from second directory
set archive attribute if in both directories
include system files
don’t page display
echo to printer
send final form feed
Options B and M are mutually exclusive.

meowm R

Figure 3
2TIME Version 1.3
Displays or sets 2ZSDOS date and time.
Usage:

ZTIME {{mm}/{dd}/{yy}} {{hh}:{mm}:{ss}}
sets clock, or

ZTIME ({/}option}
Optiona:

C Show date and time continuously

S Set date and time interactively

Figure 2
FILT Version 8.0 Copyright (c) 1986 by Irv Hoff
Usage:

FILT {dir:}infile {{dir:})outfile} {{/}options}
The outfile defaults to the name of the infile.

Mode Options:

s Source Code

A ASCII Text [default])

W WordStar-remove dot commands

D WordStar-retain dot commands
Other Options:

T don't use tabs

Q quiet mode on

JUSTIFY Version 1.2 Copyright (c) 1988 by Irv Hoff
Usage:

JUST {dir:}infile {dir:}{outfile} {{/)options}
If no ocutfile is given, default is filetype "Jus”.
In-Text Options, in first column of source file:

) center this line

] justify this indented paragraph

H do not justify this line

Cammand Line Options:
n line width for justifying (default 65)

DATE See DATSTP-U.COM. For ZSDOS and ZDDOS only.
HLP=Y
CFG=Y

CFG=Y Combines DSKMAP and many functions of UMAP.

wp See EXTEND.COM. Type 4.
HLP=Y
CFG=N

CFG=N

DATE See DATSTP-U.COM. Universal version (28DOS, 2DDOS, or 23PLUS).

DATE Displays or changes the create and modify date stamps on any file
HLP=Y from the command line. Universal version (ZSDOS/ZDDOS/ZRDOS with
CFG=Y DateStamper, under Z3PLUS will display but not change date stamps).

DATSTP-2.30M 1.70 30 4 31 3B3E DATSTP1l7 64 08/30/91 Gene Pizzetta
DATE See DATSTP-U.COM. For ZSDOS and ZDDOS only. Type 3 at 8000h.

DSTATS.COM 1.20 3 V211 2 16 1AOE DSTATS12 19 08/09/91 Terry Hazen
DISK 2CPR3 disk/user statistics utility. Displays disk block size, disk
HLP=Y capacity, allocated and free space, list of active user areas, etc.

EXTEND.4OM 1.40 4 V213 2 11 D4ED EXTEND14 10 08/14/91 Bruce Morgen

EXTEND.COM 1.40 4 V213 1 8 DEOD EXTEND14 10 08/14/91 Bruce Morgen
WP Text file extender for all Z80 machines. Appends input line to new
HLP=Y or existing ASCII file. Vs 1.0 (09/81) by Ron Fowler.

HELPC.COM 1.50 0 V213 5 37 5794 HELPC15 24 09/16/91 Howard Goldstein
HELP Replacement for the standard Z-System HELP utility.
HLP=N as well as normal, uncompressed help files. Print options are
CFG=Y disabled when wheel byte is turned off. Configurable with ZCNFG.

Handles crunched

M store date and time in memory registers 18-23 S justify lines starting with space
E Show elapsed time since using opticn M L justify lines regardless of length
If no date and time string or option is given, F retain form feeds
the current date and time is displayed. Q0 quiet mode on
ure elapsed time. An “M” option
DATSTP-U.40M 1.70 4 0 7 52 F6BA DATSTP17 64 08/30/91 Gene Pizzetta stores the current date and time in

memory registers, and an “E” option

HLP=Y Type 4. compares the current time with that
=Y . .

cre stored in the registers to calculate the

DATSTP-U.COM 1.70 0 0 6 44 A480 DATSTP17 64 08/30/91 Gene Pizzetta elapsed time in hours, minutes and

seconds (up to 24 hours maximum).
ZTIME also has an option to show the
time continuously. Two versions are
available for ZSDOS and Z3PLUS,
with wheel byte support (setting the

HLP=Y .
CFG=Y clock will not work unless the wheel
byte is set).
DATSTP-Z.40M 1.70 4 0 5 36 970E DATSTP17 64 08/30/91 Gene Pizzetta
DATE See DATSTP-U.COM. For ZSDOS and ZDDOS only. Type 4. ZSLIB vs 3.2
HLP=Y 3)
CFG=Y As mentioned last time, Gene has
released an update (now vs 3.2) of
-Z. . 0 D 7 izzett : :
DATSTP-2.COM 1.70 3 4 31 486D DATSTP1 64 08/30/91 Gene Pizzetta ZSLIB, a set Of routines Wthh

provides extensive date and time and
file stamp support for ZSDOS,
Z3PLUS and CP/M-Plus (in addition,
it supplements SYSLIB with a number
of general-purpose routines).
Improvements include: greater
compatibility with DSLIB routines,
switchable date output in either
American (mm/dd/yy) or European
(dd.mm.yy) date order, switchable
time output in either military (24 hour)
or civilian format, and more flexible
command-line parsing of date and
time specs. Version 32 also adds a
new set of video highlighting routines
which are much smaller (although
somewhat slower) than similar
modules in VLIB4.

40

The Computer Journal / #53

DATSTP vs 1.7

Gene has also provided some im-
provements to DATSTP, his utility for
displaying or changing (from the com-
mand line) ZSDOS and Z3PLUS create
and modify date stamps. See Figure 4
for its syntax.

DATSTP does not just “replace”

" date and time specs, but “edits” them.

An editing buffer is loaded with a file’s
current create date stamp and the
command-line spec is applied to it.
Any missing fields in the input spec
remain unchanged in the buffer,
allowing for very flexible entry. Create
and modify date stamps can be edited
individually or both given the same
stamp. The major changes to DATSTP
since last October (vs 1.4) are the use of
ZSLIB32’s more flexible parsing of
date/time specs and the revival of
support for DateStamper (DATSTP
will now function as long as there is a
IMTIME&.DAT file on disk;
DateStamper need not even be
running). Version 1.7 adds a C option
which allows use of the current system
time as the stamp editing source. It
moves the current date into the edit
buffer as the default date, but does not
affect which stamp is modified. You
must, for instance, use the C and M
options together to change the modify
stamp to the current date.

RCOPY vs 1.2

RCOPY is Gene’s tool to automate
transfer of a set of files to a RAM disk
at boot-up. As a side benefit, it can re-
duce considerably the size of
STARTUP aliases. See Figure 5 for syn-
tax

RCOPY can also be used to copy a

HELPLSH.COM 1.10 4 V212 3 21 5611 LSH1l 66 08/24/91 Rob Friefeld

HELP Help program for LSH vs 1.1.
HLP=Y
CFG=N
LBREXT.COM 3.30 0 v213 8 64 159F LBREXT33 35 08/02/91 Howard Goldstein
LBR Extracts crunched, squeezed and LZH-encoded files from LBRs.
HLP=Y Vs 2.0 by Bob Peddicord.
CFG=Y
LDIR-B.COM 2.20 0 V211 2 16 A343 LDIRB22 25 09/10/91 Bruce Morgen
LBR Displays LBR directories showing file dates and sizes. Includes a
HLP=Y summary line of active/free/deleted/total member entries. For CP/M
CFG=N 2.2 or CP/M+ with runtime ZCPR3 support. Vs 1.0 (87) by S. Greenberg.
LHC.COM 2.00 0 v213 5 40 29F0 LBRHIP20 45 09/16/91 Howard Goldstein
HELP Remake of HELP 5.3 which reads crunched .HIP files in LBRs.
HLP=N
CFG=Y
LHQ.COM 2.00 0 v213 5 37 166D LBRHLP20 45 09/16/91 Howard Goldstein
HELP Remake of HELP 5.3 which reads squeezed .HLP files in LBRs.
HLP=N
CFG=Y
LPUT.COM 2.20 4 v213 6 48 3D8A LPUT22 35 08/26/91 Howard Goldstein
LBR Automated CPM/ZCPR3 library maker. Does for LBR creation what LGET
HLP=Y does for extraction.
CFG=N
LSH.30M 1.10 4 v212 8 59 FFE8 LsSH1l 66 08/24/91 Rob Friefeld
SHELL Log SHell is a screen-oriented command line editing shell.
HLP=Y LSHINST.COM installs program defaults and control key bindings.
CFG=N .
LSH.40M 1.10 4 V212 9 68 9256 LSH11 66 08/24/91 Rob Friefeld
SHELL See LSH.30M. Type 4.
HLP=Y
CFG=N
LSHF.30M 1.10 3 v212 8 59 17A6 LSH11 66 08/24/91 Rob Friefeld
SYS See LSH.3OM. “Fixed-file”, Type-3 version.
HLP=Y
CFG=N
LSHF.40M 1.10 4 v212 9 68 86B3 LSH1l1 66 08/24/91 Rob Friefeld
sYS See LSH.30M. *“Fixed-file", Type-4 version.
HLP=Y
CFG=N

LSHINST.COM 1.10 4 V212 11 85 6909 LSH1l 66 08/24/91 Rob Friefeld
SHELL Install program for LSH vs 1.0r.
HLP=Y
CFG=N

Figure 4

DATSTP Version U-1.7

are displayed only.
create stamp.

DATE/TIME FORMAT:
{mm}/{dd}/{yy} {hh}:{mm}
{mm}/ {dd} /{yy} +{nnnn}

OPTIONS:
C edit the current date and time
M edit and write the modify stamp

Q toggle quiet mode on
option C overrides option M for edit.

(loaded at 0100h)
Edits and displays file date stamps under ZSDOS, Z3PLUS,

If no date and time or option is given, date stamps
Edit and write default to the

clock time
relative time

B write both the create and modify stamps

Figure 5
RCOPY Version 1.2
Copies list of files from AO: to AO:

& DateStampex. Usage:
RCOPY12 {{/}option}
USAGE: Option:
DATSTP {dir:}filename {date} {time} {{/}options} Q toggle guiet mode on

MOVING?

Don’t leave us behind!

Send Change of Address six weeks prior to move.

The Computer Journal / #53

41

list of other types of files from one .
directory to another (e.g, WordStar LT.COM 3.00 CoO 7 53 55D6 LT30 56 07/17/91 C. B. Falconer

overlay files before a word-processing LBR Library Type can type normal, LZH-encoded, crunched or squeezed files

. Th d destinati HLP=N whether standalone or in a .LBR. Can extract/uncrunch any/all files
se‘ssmn): € sc')urce E}n . .es ination CFG=N at the same time. Adapted from Steven Holtzclaw’s LUXTYP (06/83).
directories and list of files is internally

configured (with ZCNFG). The file list NUKEYCLK.COM 0.30 0 0 2 16 7PCC NKYCLK03 6 07/13/91 Joe Mortensen
: - ROt Iop Enables IOP Nukey to have current date/time available as macros
can contain up to 20 files (a hmltatlon HLP=N within other applications such as WordStar. For ZCPR33+ systems

of ZCNFG; an unlimited number can CFG=N with built-in clock.

be coded internally). Improvements

since the last version (9/90) include the RCOPY.COM 1.20 00 3 20 72FD RCOPY12 20 08/17/91 Gene Pizzetta
. FILE Copies a list of files between two directories.

preservation of date stamps under HLD=Y

ZSDOS/ZDDOS and the ability to set CFG=Y
archive, system and/or no-stamp

. s e STATPAT.Z80 3.00 0 0 4 30 OBYA STATPAT3 3 08/26/88 Bruce Morgen
attributes on the destination files. PROG4 Patches STAT.COM to work under ZCPR3.
HLP=Y
Program of the Month CFG=N
ZCNFG vs 1.9 (ZSUS Vol 2 #12)
b h had dit th TPA.COM 3.3a CO 1 5 EDBB TPA33A 12 08/19/91 Jay Sage
Remember when you ha to edit the sYs Reports amount of memory available in TPA (Transient Program Area)
data options and reassemble the source HIP=N and allows one to temporarily lower the size of TPA. Vs. 3.3 adds
P
code to configure a program such as CFG=N ZCPR "//" help screen, display in kilobytes.
FileFind to your particular system and ZCNFG.COM 1.90 4 V212 6 48 EO21 ZCNFGLS 109 08/21/91 Al Hawley
Sty]e of usage? If you were lucky, sYS Universal configuration utility which configures option data in
someone provided an Overlay patch SO HLP=Y executable files. Uses .CFG overlay file.
you didn’t have to touch the source CrG=Y
code itself. Well, much of this is behind ZCRCK.30M 1.40 3 V211 3 24 806E ZCRCK14 16 08/08/91 Bruce Morgen
us now. Al Hawley’s universal FILE See ZCRCK.COM. Type 3 at 8000h.
configuration utility, ZCNFG, greatly gijzfﬁ
simplifies the configuration of any pro-
gram. Yes, given that conventions are ZCRCK.40M 1.40 4 V211 4 29 B3D6 ZCRCKI4 16 08/08/91 Bruce Morgen
followed in programming of its FILE See ZCRCK.COM. Type 4.
overlay (.CFG) file, any Z-System or PN
y L 4 y y ' CFG=]
CP/M program can now benefit from
its simple, menu-approach to ZCRCK.COM 1.40 3 V211 3 24 2EEA ZCRCK14 16 08/08/91 Bruce Morgen
configuration FILE ZCPR3-compatible version of Sigi Kluger’s NZCRCK1, which was

ZCNEG . . . 1 HLP=Y designed to combine the features of CRCK and CHEK on RCP/M systems.

s operation is simple. See CFG=N oOriginal (05/86) by Bruce Morgen.

Figure 6 for ZCNFG’s syntax and a

sample configuration screen. ZDB.COM 1.50 00 8 64 F4AD7 ZDB1S 23 09/09/91 Joe Mortensen
" The data opti d t selec DBASE Small, fast name and address manager with built-in label and

. ala op lo'ns an Cu'rren sele HLP=Y envelope addressing features. NZITCAP and VLIB4D support.

tion for each option are displayed to CFG=N

the user in one or more menus. These

may be in the form of ”toggles" for ZDT.COM 1.00 0 0' 8 6‘.1 3034 ZD".T.‘lO 43 08/05(91 Joe Mortensen
. . A DBASE Z-System Day Timer, a daily planning calendar derived from ZDB.

yes/no Ooptions, multlp]e'Ch01ce ap- HLP=N Automatically reads the real-time clock and displays the current

tions, or various edit options (the hex CFG=N day’s schedule. Requires ZCPR3.0+ and extended TCAP.

or decimal value of a byte, a DU: or

Z3-style fil inter init stri ZERR. 30M 1.60 3 V212 3 23 DFDA ZERR16 49 08/24/91 Rob Friefeld

style hile spec, a printer it s nng, ERROR Bare-bones error handler derived from EASE vs 1.62. Configured
etc.) which the user changes to suit his HLP=Y with ZERRINST.COM.
needs. Help screens are usually avail- CFG=N
able to explain ea.ch conﬁgurihon. op- ZERR.40M 1.60 4 V212 4 31 A98A ZERR16 49 08/24/91 Rob Friefeld
tion. When all options are “set”, exiting ERROR See ZERR.IOM. Type 4.
with X or ESC overlays the appropriate HLP=N
data to the configuration block in the CrG=N
first page of the target program. That ZERRINST.COM 1.60 3 V212 4 31 65Dl ZERR16 49 08/24/91 Rob Friefeld
sxmple! ERROR Install program for ZERR.COM vs 1.6.

Al has made some major improve- HLP=N

. CFG=N

ments to ZCNFG since vs 1.6 (7/90). Its
search logic, for instance, has been ZERRLSH.COM 1.10 3 V212 4 29 B69B LSH1l 66 08/24/91 Rob Friefeld
changed to speed up response for com- ERROR ZCPR 3.3+ error handler which performs all the functions of ZERR.

HLP=Y Automatically updates history file, if LSH history shell is active.

on t f usage. Now, if ei a
m ypes o ge. Now, if either CFG=N Configured with ZERRINST.COM.

partial or complete DU is given, the al-

ternate directory is not searched. If the ZERRLSHF.COM 1.10 3 V212 4 29 6719 LSH1l 66 08/24/91 Rob Friefeld
CFG name is taken from the target ERROR See ZERRLSH.COM. “Fixed-file” version.

) : . HLP=Y

file’s configuration block, the alternate CFG=N

directory is searched first. A colon or

42 The Computer Journal / #53

ZFIND.COM 1.40 00 4 30 BS5S4E ZFIND14 35 08/11/91 Terry Hazen
FILE 2CPR3 string search utility which very quickly finds ASCII strings in
HIP=Y text files. Found string can be displayed in either line or delimited
CFG=Y block. Output can be written or appended to a file.

ZLT.COM 1.50 00 6 47 E427 ZLT1S 38 09/12/91 Howard Goldstein
LBR Z-System Library Typer, basically a Z’ified LT29 with file
HLP=Y extraction and parsing code removed. Vs 1.1 (09/88) by Bruce
CFG=Y Morgen.

ZP.30M 1.50 30 8 64 81DA ZP15 86 08/23/91 Terry Hazen
FILE See ZP.COM. Type 3 at 800Ch.
HLP=Y
CFG=Y

ZP.40M 1.50 4 0 10 74 FAA2 ZP15 86 08/23/91 Terry Hazen
FILE See ZP.COM. Type 4.
HLP=Y
CFG=Y

ZP.COM 1.50 00 8 64 A257 ZP15 86 08/23/91 Terry Hazen

FILE ZCPR33+/Z3PLUS/BGii screen-oriented file/disk/memory record patcher
HLP=Y using the ZPATCH command set. Requires a VLIB4D+ Z3TCAP. One-record
CFG=Y cache can be exchanged with file/disk/memory records.

ZSLIBM.REL 3.20 4 0 27 212 E201 zZSLIB32 94 09/08/91 Gene Pizzetta
PROG1 Assembly language routines to assist programmers in handling date-
HLP=Y stamp maintenance under ZSDOS, Z3PLUS, and CP/M Plus. Microsoft
CFG=N REL format.

ZSLIBS.REL 3.20 40 25 197 412F ZSLIB32 94 09/08/31 Gene Pizzetta
PROG1 See ZSLIBM.REL. SLR format.
HLP=Y
CFG=Y

ZSWEEP .COM 1.30 00 16 122 C80C 2813 38 09/11/91 Pete Pardoe
LBR 7'ified version of NSWP207 with ability to act upen current file with
HLP=N any 2-System command up to 127 chars. NDR support, datestamp display.
CFG=N Requires ZCPR33+ with extended TCAP.

ZSWEEPNB.COM 1.20 00 19 152 073A ZS12 49 08/03/91 Pete Pardoe
LBR See ZSWEEP.COM. Generic version (regular TCAP}).
HLP=N
CFG=N

Figure 6
ZCNFG, Z-SYSTEM CONFIGURATION UTILITY
Version 1.9, 08/20/91

Configures option data in Executable files.
Syntax:
ZCNFG [du/dir: J<naml>[.<ex1>] [du/dir:]{<nam2>][.<ex2>]

du/dir: defaults to the current drive and user

<naml> is the Executable tile to configure.

<nam2> is the configuration overlay file.

<exl> defaults to COM, <ex2> defaults to CFG
Example: ZCNFG ZCNFG ;configures itself.
A related configuration data file must be present to provide
Screen layout, Menus, and configuration data.

BO:WORK>zcnfg zcenfg

ZCNFG, Z-SYSTEM CONFIGURATION UTILITY
Version 1.9, 08/20/91

ZCNFG CONFIGURATION

T) Target Program Default Filetype CcoM
0) Overlay file Default Filetype CFG
Z) Z3ENV auto-install for 2CPR3 YES
B) Alternate D/U for Overlay files D15
L) console Lines per Screen 24

C) Configuration LBR name CORFIG.LBR
D) Use TARGET DU as the default for the CFG filespec

ZCNFG INSTALLATION CONTROL
X or Esc =Save changes & eXit Q,”C =Quit with no changes saved
/ or ? =Explain Options > or . =Next Menu < or , =Previous Menu
Which choice?

The Computer Journal / #53

form-feed character has also been
added as the first character of a line in
help screens to invoke paging. But that
isn’t all. Back in May, 1 asked Al if
ZCNFG couldn’t be made to recognize
its configuration (CFG) files from in-
side an LBR in a specified directory.
There were sao many of these files lying
around that they were getting hard to
keep track of and, for me, were taking
up a lot of precious hard-disk space.
Well, with version 1.9, Al has added
this very feature, giving you the option
now of allowing them to reside
unLBR’ed in an alternate directory or
setting up an LBR of CFGs, with a
name and location of your choice.
CONFIG.LBR (the default name of the
LBR) is expected to be found in
ZCNFG's alternate directory and is
now searched first for the CFG file if
there is no DIR form (D:, U;, DU: or
DIR:) specified in the invoking com-
mand tail.

As Z-Librarian, | try to keep an up-
to-date package of the latest Z-System
COM files, along with their associated
HLP and CFG files. Being able to main-
tain the CFG files in one, single library
saves considerable time in finding
needed files and disk space in storing
them. In September I uploaded to the
Z-Nodes CFG01.LBR, a full set of CFG
files for the latest existing executables
for use with ZCNFG19. It contained 66
files (there are now well over 70) and
took up only 149k, instead of 312k if
the files were to reside separately on a
hard disk with 4k-per-file allocation.

What can 1 say? ZCNFG has im-
proved to the point where it is now one
of the most “essential” of Z-System
tools. | think we can safely say that “Z-
CoNFiGuration” is the “standard” for
setting up configuration options for
users in Z-System programs. It should
become a standard for CP/M. Many
thanks, Al'®

The ultimate test
of Man’s conscience
may be in his
willingness to sacrifice

something for
future generations
whose words of thanks

will not be heard.
—Gaylord Nelson

43

Reader, from page 30
journal has become my favorite computer magazine.

Please don’t forget that some readers are still in the learn-
ing mode and are not on the same knowledge plane as the
editor or the authors. [hope that | can feel free to ask some
dumb questions from time to time and that the journal can be
a learning tool while still being a method of exchanging ideas

among peers.
B.R., Cabot PA

May 1 suggest the entire computer elite suffers from a
common malady. It is not elegant to employ cryptic
abbreviations and “well-known” mnemonics. The proper
way to expose is to assume that no reader is an insider but
that every reader truly desires to understand.

You should print no article without a complete glossary
explaining any possibly obscure term. Take a paper you con-
sider worth publishing. Place it in the hands of someone who
is decidedly not knowledgeable. Extract from the subject an
evaluation unencumbered by any form of intimidation or
put-down by the resident experts. If it ain’t right, fix it.

I am quite isolated. Have had this Atrix for several years
and can operate it as an appliance, make simple repairs and
do a bit of non-elegant BASIC programming. I weuld very
much like to upgrade. The machine has an IEEE-48 port, a
50-pin D-connector receptacle on the motherboard and the
ability to address external double sided 5 1/4 and 8-inch
drives. I would like to add a hard disk or 8-inch floppy. So
far, I have not found any source of information to help. Ya
wanna help?

E.B. Swisshome OR

True, some readers are not at the level of the authors. In fact,
no one is at the level of all the authors. TCJ was never meant to be
light reading. This is a technical journal and authors should not
oversimplify advanced topics as we frequently cover. Still, 1 hope
that our authors note your thoughts and take the extra time to
explain things. We are all intelligent people here, but we come
from different computer disciplines and need terms defined.

Please do fecl free to ask questions. Most authors give their
address in their biographical paragraph. Otherwise, ask me and |
will forward the question on.

We are promised an article on building a generic SCSI port
daughterboard. This would allow you to add a hard drive to your
Atrix. —Ed.

Thank you for providing a publication for the serious
hobbyist!

R.S. Millers MD

I really appreciate your practical hardware and software
approach and your Forth coverage.

I would like see a project of building a very small Z80-
based portable, even if it requires a separate monitor and
keyboard, using the super-integrated chips with CTC, DMA,
SIO and PIO. My idea would be to mount a board on the side
of a slim 3.5" floppy drive. Ideally, it would have native
Forth in ROM that could boot CP/M.

I am an electronics technician who switched to software
six and a half years ago. I have been making my living pro-
gramming in Forth ever since. I would like to work on such a
project with someone.

E.J. Portland OR

This man treads my mind! These were my exact thoughts the

44

first time I saw a YASBEC. Anyone for a good hack?—Ed.

I love it! Could you suggest good back issues for someone
just starting out in embedded systems?

G.S., Richmond Height OH

Take a look at issues 40 onward. 1 found Tim McDonough's
articles in 45, 46 and 47 particularly good and continue to hope he
will submit again. Matt Mercaldo’s pieces starting in issue 44 are
excellent. —Ed.

I am so enthusiastic to have found a publication that fits
my interests that I plan to send a letter detailing just what
kind of person your newest subscriber is. Is there a method
of transmitting this letter electronically? This is a “must read”
publication!

].B., Brookshire TX

Letters and articles can be submitted over the Internet to
cmcewen@gnat.rent.com, on GEnie at TCJ$ or on my bulletin
board at (908) 754-9067. The Internet address is courtesy of Andy
Meyer. The GEnie address goes to all the TCJ editors, so don't
give away state secrets! Don't be shy about submitting an idea for
an article, either—Ed.

I believe a simple mistake has been made in relation to my
subscription. The renewal notice states that my subscription
expires with issue 54. It should expire six issues later as |
subscribed for two years.

P.C, Balcatta WA Australia

Oops! My mistake. This happens now and then. Did you notice
that the address label shows your expiration? Let me know if it
isn't right. All I need is a note to look into it.—Ed.

One small note of editorial concern: In issue 52, Richard
Rodman’s column gets to the bottom of page 49, then
launches out into hyperspace, never to appear again in the
magazine.

B. M., Gainesville FL

Your electronic mail was my first clue of this mistake. It was
the first of a flood, and 1 learned my lesson: Never mess with
Richard’s column!—Ed.

I wanted you to know that | am impressed with TCJ's
content! It is by far the most bang-for-the-buck I’ve seen in
ten years in the magazine industry.

P.T., West Lafayette IN

Thanks! Glad you're enjoying it.

I own a CP/M computer named “Alphatronic PC” here in
Germany and “Royal Alphatronic” in the UK. It was never
intended to add a hard disk to this machine, which I would
like to do. I read that there exists a kind of SCSI card for
systems like mine that one needs only to remove the Z80
chip, then plug in that board and then put in the Z80 chip in
that board. Do you know where in the States | can order such
a board, preferably with an appropriate hard disk and the
software? I have the BIOS for my system, so software is not
the problem. Were there some articles in former TCJ issues
describing how to add a hard disk to systems like mine?

U. N., Bonn, Germany

Check Wayne Sung’s article in issue 40 on adding a Bernoulli
drive. He tells how to adapt the parallel port to a generic SCSI.
Also, George Warner has been saying he will write an article about
this.—Ed.

The Computer Journal / #53

TCJhe computer Journal NMarket Place

CP/M SOFTWARE

100 page Public Domain Catalog,
$8.50 plus $1.50 shipping and hand-
ling. New Digital Research CP/M
2.2 manual, $19.95 plus $3.00
shipping and handling. Also, MS/
PC-DOS Software. Disk Copying,
including AMSTRAD. Send self
addressed, stamped envelope for free
Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

Advent Kaypro Upgrades

TurboROM. Allows flexible configura-
tion of your entire system, read/write
additional formats and more. $35

Hard drive conversion kit. Includes
interface, controller, TurboROM, soft-
ware and manual—Everything needed
to install a hard drive except the cable
and drive! $175 without clock, $200
with clock.

Personality Decoder Board. Run more
than two drives, use quad density
drives when used with TurboROM. $25

Limited Stock — Subject to prior sale
Call 916-483-0312 eves/weekends or

write Chuck Stattord, 4000 Norris
Avenue, Sacramento C A 93821

TCJ The Computer Journal Market Place
Advertising for Small Business

Looking for a way to get your message across”?
Advertise in the Market Place!

First Insertion: $50
Reinsertions: $35

Rates include typesetting. Payment must accom-
pany order. Foreign orders paid in US funds
drawn on a US bank or intemnational money order.
Resetting of ad constitutes a new advertisement
at first insertion rate. Camera ready copy from
laser printers, photo typesetters, etc., are accept-
able, Dot matrix, daisy wheel, typewriter output
not accepted. Inquire for rates for larger ads if
required. Deadline is eight weeks prior to publi-
cation date. Mail to:
The Computer Journal
Market Place
PO Box 12
S. Plainfield NJ 07080-0012 USA

Z-System Software Update Service
Provides Z-System public domain software by mail.

Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files

Z3HELP Package with over 1.3 MB of online documentation

Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!

For catalog on disk, send $2.00 ($4.00 outside North America)

and your computer format to:
Sage Microsystems East
1435 Centre Street

Editor, from page 26

many letters as we have room for. The
authors also welcome your comments.

What is missing may be more
important than what is here! Time just
ran out and | had to bump some very
promising articles to the next issue.
Bridger Mitchell returns to discuss I/O
Redirection. David Goodenough will be
here to discuss Interrupts and the Z80,
while Brian Moore will tell us how to
install ZCPR on a 16-bit Intel Platform.
George Warner tells us how to double
the clock speed on an Ampro. We have
a good article on cyclical redundancy
checking in Forth, and I expect more
on the system software for the
YASBEC. Stay tuned!®

X

I am one of the REH CPU280 users and love it. It’s fast
and the operating system Tilman built with the automatic
changing of formats is better than Uniform. It's great for a
member of a club who often has to change formats for send
software disks to members.

We have a OMTI 55xx card working with the CPU280 and
I use a 68MB RLL Toshiba HD. Tilman built a AT-BUS
adapter card and Uwe Herzceg made the BIOS for the AT-
BUS hard disk. It will work together with my CPU280 and |
hope I have the time doing the same with my GENIE IlIs.

I am collecting old CP/M computers and have a Genie I,
111, llIs, a Kaypro 11, an Epson Px-8 a REH CPU280, a Mor-
row MD3, a Sharp 3541, a Tatung TPC-2000. The C128 is for
the only PROM burner I have.

If someone has a Genie III or llls or a Speedmaster | can
send him the opcode of the BIOS (OS) CP/M 2.2 and 3.

The Computer Journal / #53

Maybe that these nice computers found the way to the USA.

I want to get all the old TCJs. What would it cost and can
I get them?

F.C., Saarstr. Germany

Your computer room has more inventory than most stores over
here! To the best of my knowledge, some of your machines never
made it to these shores. You must have your work cut out for you
in supporting your users with disks. 1 know what I go through for
Z5sus!

Your group is likely the most active in the world, and you
surely have some high powered help. 1 look forward to hearing
more about what everyone is up to.

Take a look on pages 46 and 47 for a listing of the available back
issues. Some are sold out, others nearly so. Still, there are enough
issues still available to make it through a cold long winter.—Ed.@

45

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Issue Num 8:

» Parallel Interface for Apple [| Game Port

» The Hacker's MAC: A Letter from Lee
Felsenstein

« S-100 Graphics Screen Dump

+ The LS-100 Disk Simulator Kit

+ BASE: Part Six

» Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 1

s

Isoye Number 20;

+ Designing an 8035 SBC

» Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

« Soldering & Other Strange Tales

» Build an S-100 Floppy Disk Controller:
WD2797 Controlter for CP/M 68K

| Num| 1:

+ Extending Turbo Pascal: Customize with
Procedures & Functions

* Unsoldering: The Arcane Art

» Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

« Programming the 8035 SBC

46

issue Number 22;

+ NEW-DOS: Write Your Own Operating
System

+*Variability in the BDS C Standard Library

+ The SGSI Interface: Introductory Column

» Using Turbo Pascal ISAM Files

+ The Ampro Little Board Column

Issue Number 23:

+ C Column: Flow Control & Program
Structure

« The Z Column: Getting Started with
Directories & User Areas

« The SCS| Interface: Introduction to SCSI

+ NEW-DOS: The Console Command
Processor

« Editing the CP/M Operating System

+ INDEXER: Turbo Pascal Program to Create
an Index

* The Ampro Little Board Column

Issue Number 24:

» Selecting & Building a System

+ The SCS| Interface: SCSI Command
Protocol

- Introduction to Assemble Code for CP/M

*» The C Column: Software Text Filters

+ Ampro 186 Column: Installing MS-DOS
Software

*» The Z-Column

* NEW-DOS: The CCP Internal Commands

« ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 25:

+ Repairing & Modifying Printed Gircuits
« Z-Com vs. Hacker Version of Z-System
+ Exploring Single Linked Lists in C

- Adding Serial Port to Ampro LB

» Building a SCS! Adapter

» NEW-DOS: CCF internal Commands

» Ampro 186 Networking with SuperDUC
+» ZS1G Column

Issue Number 26:

« Bus Systems: Selecting a System Bus

* Using the SB 180 Real Time Clock

» The SCSI Interface: Software for the SCSI
Adapter

« Inside Ampro Computers

+ NEW-DOS: The CCP Commands
{continued)

* ZSIG Corner

« Affordable C Compilers

« Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

« 68000 TinyGiant: Hawthorne’s Low Cost
18-bit SBC and Operating System

*« The Art of Source Code Generation:
Disassembling Z-80 Software

+ Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

+ The C Column: A Graphics Primitive
Package

« The Hitachi HD64180: New Life for 8-bit
Systems

» ZSIG Corner: Command Line Generators
and Aliases

+ A Tutor Program in Forth: Writing a Forth
Tutor in Forth

* Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28:

» Starting Your Own BBS

» Build an A/D Converter for the Ampro Little
Board

« HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

+ Using SCSI for Real Time Controt

- Open Letter to STD Bus Manufacturers

» Patching Turbo Pascal

» Choosing a Language for Machine Control

{ssue Number 29:

« Better Software Filter Design

« MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

= Using the Hitachi hd64180: Embedded
Processor Design

« 68000: Why use a new OS and the 680007
« Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* The ZCPR3 Corner

Issue Number 30:

« Double Density Floppy Controlier

+ ZCPR3 |OP for the Ampro Little Board
*» 3200 Hackers' Language

+ MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

» Non-Preemptive Multitasking

* Software Timers for the 68000

« Lilliput Z-Node

* The ZCPR3 Corner

* The CP/M Corner

Issue Number 31;

« Using SCS! for Generalized I/0

+ Communicating with Floppy Disks: Disk
Parameters & their variations

« XBIOS: A Replacement BIOS for the
SB180

+ K-OS ONE and the SAGE: Demystifying
Operating Systems

* Remote: Designing a Remote System

Program
. The ZCPR3 Corner: ARUNZ
Documentation

lasue Number 32:

+ language Development; Automatic
Generation of Parsers for interactive
Systems

« Designing Operating Systems: A ROM
based OS for the Z81

» Advanced CP/M: Boosting Performance

« Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB

*« WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems

» K-OS ONE and the SAGE: System Layout
and Hardware Configuration

+ The ZCPR3 Corner: NZCOM and ZCPR34

Issye Number 33:

» Data File Conversion: Writing a Filter to
Convert Foreign File Formats

» Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

» DataBase: The First in a Series on Data
Bases and Information Processing

« SCSI for the S-100 Bus: Ancther Example
of SCSI's Versatility

« A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

« Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

* ZCPR3 Corner: ABUNZ Shells & Patching
WordStar 4.0

Issue Number 34:
* Developing a File Encryption System.
+ Database: A continuation of the data base

primer series.
» A Simple Muititasking Executive:
Designing an embedded controller

multitasking executive.

+ ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

+ New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

» Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CPM 22

« Macintosh Data File Gonversion in Turbo
Pascal.

+ The Computer Corner

Issue Number 35:

« Ail This & Moduia-2: A Pascallike
alternative with scope and parameter
passing.

«+ A Short Course in Source Code
Generaticn: Disassembling 8088 software to
produce modifiable assem. source code.

+ Real Computing: The NS32032.

- 5-100: EPROM Burner project for S-100
hardware hackers.

+ Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

+ REL-Style Assembly Language for CP/M
and Z-System. Part 1. Selecting your
assembler, tinker and debugger.

« The Computer Corner

Issue Number 36:

+ Information Engineering: Introduction.

* Modula-2: A list of reference books.

* Temperature Measurement & Control:
Agricultural computer application.
+ ZCPR3 Corner: Z-Nodes,
Amstrand computer, and ZFILE.

» Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

+ SPRINT: A review.

+ REL-Style Assembly Language for CP/M
& ZSystems, part 2.

+ Advanced CP/M:
programming.

* The Computer Corner.

Z-Plan,

Environmental

Issue Number 37:

« C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

+ ZCPR3 Corner: 2Z-Nodes, patching for
NZCOM, ZFILER.

« Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

« Sheils: Using ZCPR3 named shell
variables to store date variables.

« Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

+ Advanced CP/M: Raw and cooked console
O.

» Real Computing: The NS 32000.

+ ZSDOS: Anatomy of an Operating System:
Part 1.

« The Computer Corner.

Issue Number 38:
« C Math: Handling Dollars and Cents With
Cc

» Advanced CP/M: Batch Processing and a
New ZEX

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

« The Z-System Corner; Shells and ZEX,
new Z-Node Central, system security under
Z-Systems,

- Information Engineering: The portable
Information Age.

» Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

+ Shells: ZEX and hard disk backups.

* Real Computing: The National
Semiconductor NS320XX.

- Z8D0S; Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performarice: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

+ The Z-System Corner:
enhancements with NZCOM.

« Generating LaserJet Fonts: A review of
Digi-Fonts.

« Advanced CP/M: Making old programs Z-
System aware,

+ C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

* Real Computing: The National
Semiconductor NS320XX.

« The Computer Corner.

System

The Computer Journal / #52

Issue Number 40;

- Programming the LaserJet: Using the
escape codes,

» Beginning Forth Column: Introduction.

+ Advanced Forth Column: Variant Records
and Modules.

+ LINKPRL: Generating the bit maps for PRL
files from a REL file.

« WordTech's dBXL: Writing your own
custom designed business program.

+ Advanced CP/M: ZEX 5.0-The machine
and the language.

+ Programming for Performance: Assembly
language techniques.

+ Programming Input/Output With C:
Keyboard and screen functions.

- The Z-System Corner: Remote access
systems and BDS C.

+ Real Computing: The NS320XX

« The Computer Corner.

1 41:

« Forth Column: ADTs,
Concepts.

« Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

» How to add Data Structures in Forth

« Advanced CP/M: CP/M is hacker's haven,
and 2-System Command Scheduler.

« The Z-System Corner: Extended Muitiple
Command Line, and aliases.

* Programming disk and printer functions
with C.

» LINKPRL: Making RSXes easy.

« SCOPY: Copying a series of unrelated
files.

« The Computer Corner.

Issue Number 42;

« Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

» Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

« Forth Cotumn: Lists and object oriented
Forth.

» The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

» 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

« Advanced CP/M: PluPerfect Writer and
using BDS C with REL files,

* Real Computing: The NS 32000.

*» The Computer Corner

Issye Number 43;

« Standardize Your Floppy Disk Drives,

+ A New History Shell for ZSystem.

« Heath's HDOS, Then and Now.

« The ZSystem Corner: Software update
sefvice, and customizing NZCOM.

+ Graphics Programming With C. Graphics
routines for the IBM PC, and the Turbo C
graphics library.

» Lazy Evaluation: End the evaluation as
soon as the result is known.

+ $-100: There's still life in the oid bus.

« Advanced CP/M: Passing parameters, and

Object Oriented

The Computer Journal

Back Issues

Sales limited to supplies in stock.

{ssue Number 44:

» Animation with Turbo G Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros FEBFC11
and Max Forth.

« Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cabie.

» DosDisk: MS-DOS disk format emulator for
CP/M.

+ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

+ Real Computing: The NS32000.

« Forth Column: Handling Strings.

» Z-System Corner: MEX and telecommuni-
cations.

* The Computer Corner

issye Nymber 45:

« Embedded Systems for the Tenderfoot:
Getting started with the 8031.

» The Z-System Corner: Using scripts with
MEX.

+ The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

» Advanced CP/M: String searches and
tuning Jetfind.

« Animation with Turbo C: Part 2, screen
interactions.

 Real Computing: The NS32000.

« The Computer Corner.

|ssue Number 46;

» Build a Long Distance Printer Driver.

= Using the 8031's built-in UART for serial
communications.

* Foundational Modules in Modula 2.

» The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

e Animation with Turbo C: Text in the
graphics mode.

* 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

N ra7;

- Controlling Stepper Motors with the
68HC11F

+ Z-System Corner: ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

» ZCPR3 & Modula, Too

» Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

» Long Distance Printer Driver: correction

+ ROBO-S0G 90

- The Computer Corner

issye Number 48:

« Fast Math Using Logarithms

« Forth and Forth Assembler

+ Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CPM
Computer (Building a SCSi Interface)

* Review of BDS 'Z*

« PMATE/ZMATE Macros, Pt. 1

» Real Computing

+ Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

+ Z-Best Software

- The Computer Corner

|ssue Number 49;

« Computer Network Power Protection

« Floppy Disk Alignment w/RTXEB, Pt. 1
* Motor Control with the F68HG11

» Controlling Home Heating & Lighting, Pt. 1
« Getting Started in Assembly Language
» LAN Basics

* PMATE/ZMATE Macros, Pt. 2

+ Real Computing

+ Z-System Corner

+ Z-Best Software

+ The Computer Corner

|ssue Number 50;

- Offload a System CPU with the 2181

- Floppy Disk Alignment w/RTXEB, Pt. 2

« Mator Control with the FE8HC11

» Moduia-2 and the Command Line

» Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2
« Local Area Networks

+ Using the ZCPR3 |OP

» PMATE/ZMATE Macros, Pt. 3

« 2-System Corner, PCED

Issue Number 51;

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

+ High Speed Modems on Eight Bit Systems
- A Z8 Talker and Host

- Local Area Networks—Ethernet

« UNIX Connectivity on the Cheap

« PC Hard Disk Partition Table

+ A Short Introduction to Forth

+ Stepped Inference as a Technique for
intelligent Real-Time Embedded Control

« Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

« Z2-System Corner, The Trenton Festival

« Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number 52:

+ YASBEC, The Hardware

+ An Arbitrary Waveform Generator, Pt. 1

* B.Y.O. Assembler...in Forth

+ Getting Started in Assembly Language, Pt. 3
+ The NZCOM ICP

- Servos and the F68HC11

+ Z-System Corner, Programming for
Compatibility

+ Z2-Best Software

+ Real Computing, X10 Revisited

» PMATE/ZMATE Macros

» Controlling Home Heating & Lighting, Pt. 3
» The CPUZ280, A High Performance Single-
Board Computer

+ The Computer Corner

Back Issues Ordered:

\.

Subscription Total
Back Issues Total
Total Enclosed

complex erfor fecovery. é:a?égndmr:; 32FX16, Caches
+ Real Computing: The NS32000. . . '
+ The Computer Corner. The Computer Corner
r u.s. Foreign Foreign Total Name:
Subscriptions (Surface) (Airmail)
. Address:
1year (6 issues) $18.00 $24.00 $38.00
2 years (12 issues) $32.00 $44.00 $72.00
Back lssues
18 thru #43 $3.50 ea. $5.00 ea. My Interests:
6 or more $3.00 ea. $4.50 ea.
#44 and up $4.50 ea. $6.00 ea. Payment is accepted by check or money order. Checks must be in US
6 or more $4.00 ea. $5.50 ea. funds, drawn on a US bank. Personal checks within the US are welcome.

TC J-The Computer Journal

P.O. Box 12, S. Plainfield, NJ 07080-0012

Phone (908) 755-6186

J

The Computer Journal / #52

47

The Computer Corner

By Bill Kibler

It was a busy summer and not just with outside activities.
The computer industry seems to have been on double shift
these days. The number of new items seems to belie any
signs of there being a recession. So lets talk about two new
items to play with.

DOS 5.00

By the time you read this, I doubt any of you will not have
tried or installed the new DOS 5.00. I have mine and have
been doing some playing with it. First off let me say it
appears to work correctly and as advertised. For Microsoft
that is a new step up. Not only are they usually very late
with their product releases but they have a tendency to fall
somewhat short of expectations.

The expectations of DOS 5.00 however have never been
too great, so if it does what you want, then it must be OK. In
reviewing some of the programs I can see that for the most
part the new features are those public domain utilities which
everyone used to make up for DOS’s shortcomings. An ex-
ample is DOSKEY which stores keystrokes for later recalling
and editing. | know lots of people who have been using simi-
lar programs like that for years.

So what does this new version give you to make it worth
all the hoopla, relocatable drivers. Beside working without
bugs (at least so far) the ability to put DOS and their drivers
into extended memory is probably the most important
change. We use LAN based programs and the LAN drivers
had our program memory space down to 340K. Several pro-
grams have trouble working in that space, but with DOS 5.00
I have been able to get 478K of program space. It is still not
what | really need and any 68K based computer would not
have these problems, but for DOS it is a great step forward.

It took some time of playing around with the extended
memory drivers before I got the extra memory. It may be
possible to get more but it took half a day to get that. The
book is fair for support. They have tried to explain things in
term for all levels of users. Unfortunately the drivers section
is a complex issue and so much variability exists in user
systems that [am not sure it can be explained properly any-
where. Microsoft’s attempt is good but falls short. I think it
needs a more cook book approach with some complete and
typical examples. As it is, the instructions are broken into
many small sections and the overall relationships between
the parts is lost.

After a few hours of trying different options I believe [
understand the relationships between the parts. It appears
that the drivers can go only into what I call the shadow
memory behind the ROMS and video ram. That means maxi-
mum of 340K of RAM less system and other special block or
in my case 140K of upper memory. And yes there are all

48

kinds of new terms bantered around. UMB got used every-
where and is defined as Upper Memory Block, but how it is
really used is left out.

I guess my only complaint is the absence of a real expla-
nation for how it works internally, and thus how you can
beat or overcome their limits if your case doesn't fit one of
their normal options. The overall report however is good and
[reserve the right to change my mind about it as time goes
on.

Time Moves On

Well 1 have spent some time working with MINIX and
reached some stumbling blocks. It is not so much actual
problems as it is philosophical ones. I have gotten lazy in my
latter years and a two year old boy eats up what little time
remains. When starting on MINIX | discovered just how
many learning steps were involved. The question is do | want
to know about all these new items.

Those items range from editors, to assemblers, make files
to linking scripts. The number of steps to put together a
working system is mountainous. What it has boiled down to
is do I want to become a UNIX-like guru or do | want a
simple operating system that can be ported easily between
platforms.

Currently I am still mulling over the dilemma and would
tend to lean toward the small C operating system. [used a
commercial industrial controller based on it and found it
adequate. The whole code fits on a 360K floppy without zip-
ping. Compare that to MINIX and the multiple sections of
code, many disks of compressed files, complex assembling
and linking, and dozens of new utilities. The small C operat-
ing system uses C based utilities to give it a DOS like feel.

DOS has made me lazy over the years and I have found
their utilities rather user friendly, simple, and straight for-
ward. MINIX utilities at present for me are complex, cryptic,
and hard to use. | know if | spend many hours playing with
MINIX I will probably find the tools they have more power-
ful and in time easier to use. For now however | am not sure
I have the time or desire to learn them. | am finding this fact
even with DOS 5.00 that many of their new utilities are better
and more helpful and yet | am not sure [will learn their full
use if any use at all.] often remark on how CP/M did every-
thing [needed for many years, so why do 1 need more com-
plexity in my life now?

Make It Simple
[took a refresher course the other day on Aldus Page-
Maker 4.0 and had a wonderful time. We put together a
simple one page newsletter in three hours that included a
See Computer Corner, page 37

The Computer Journal / #53

EPROM PROGRAMMERS

Stand-Alone Gang I'mgr.unm(‘r $750.00

PR T AT * Completely stand-alona of RC driven
“muuuin“ and Eany Programs E(F)PROMs

"“ Yoy Hphitting 1 Magabit ol ORAM

User upgradable tn 32 Megahit

,,.'_"

-

.3/.08" ZIF sockel, RS-292,

Paralial n and Out

32K internal Flash EEPROM for aasy
firmwara upgrades

Quick Pulga Alporithm (27266

in & sec. 1 Magabitin 17 sec.)

2 year warranty

Mada in U.S.A.

Technical support by phone
Complate manual and schamatic
Single Sockel Programmaer also
avallabls. $550,00

Split and Shuftie 18 & 32 bit

100 User Daflnable Magros, 10 User
Definable Ganfigurations

Intelligant Identifier

Binary, Intel Hex, and Moterola §

20 Key Taotlle Keypad (not membrane) 20 x 4 Line LCD Display

Internal Programmer lor P¢

New IntelllgentAvqraqlngAlgorithm. ngrgma B4A in10§a¢_:‘. 25@in1 min., 1 Meg (27010,011)in2min. 45 aec.,
2 Meg (2762001) in 5 min. Internal card with external 40 pin ZIF. 211, Cable 40 pin2IF

+ Reads, verifies, and programs 2716, 32, 32A, 64,
84A, 128, 1284, 266, 512, 513, 010, 011, 301,
2702001, MCM 68764, 2532
Automatically seis programming valtage ‘

Load and sava buffer 1o disk

Binary, Intel Hex, and Motorela S farmats

Upgradable 1o 32 Mey EPROMS

No personality modules required

1 year warranty « 10 day money back guarantae ;

Adapters available for 8748, 49, 51, 751, 62, 65, ’ .

TMS 7742, 27210, 5701024, and memory cards *«ﬁ

Mads in U.8.A. \

Call for more information

- (916) 924-8037
cop. O8I FAx(i8 a7z 680

NEEDHAM'S ELECTRONICS

4538 Orange Grove Ave, » Bacramento, CA 85641
Mon, - Fri, 8am - 5pm PST

CI’O S'Assemblers“wwusaom
Imulators s owas s1o00
Cross- Dlsassemblers‘..ow..moo
Developer Packages

a8 low as $200.00(a $50.00 Savings

A New Project
Qur line of macro Cross-assemblers are aur to uae and full featured,
including condltional assembly and unlimited Include files
Get It To Markat--FAST
80111 walt until the hardware Is finished to dobag our software, Our
imulators can test your program logic before the hardware is bullt.

No Source!
Aminor gliteh hasé own up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-craate the
original nsombly l{anguage source.

Set To Go

Buy our developer plcka o and tha nexitime your boss sayg "Get to work.”,
you'll be ready for anything.

Quality Solutions
PuudoCorF hls bnn providing quality solutions for microprocessor
problams sinc
'BROAD RANGE OF SUPPORT

e Currently we support tha following microprocesser families (with
more In dovolopmlnt):

al 8048 RCA 18 ntel 6051
Mo‘orola 6800 Motoro!a ésm
achl 6301 Motor la &

Rockwall 65C02 Intel 8 06085 g 8
Hitachl HDE4180 Motorola 6sog%a Moi rola 68010 intal 30C168
o Al products raquire an IBM PC or comp

So What Are You Waltlng For? Call ua:
PseudoCorp

Professional Development Produciy (m)up
716 Thimble Shoals Bivd, Suite 1
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

6| 8008
Motgrola eaHC‘H Mot rola 8806
g 502 WD$4 85C02

Custom Software Soiutions for Industry:
Industrial Controls
Operating Systems
Image Processing

Custom Software Solutions for Business:
Order Entry
Warehouse Automation
Inventory Control

| Wide Area Networks

Publishing Services:
Desktop Systems

I Books

CBT

PR
U.E Wllllam P Woodall * Software Spemallst

Hardware Interfacing
Proprietary Languages
Component Lists

Point-of-Sale

Accounting Systerns
Local Area Networks
Telecommunications

Format Conversions
Directories

Interactive Video

33 North Doughty Ave, Somerville, NJ 08876 ¢
W — S A PRI '_J”‘

(908) 526-5980

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e Automatic, Dynamic, Universal Z-Systems: Z3PLUS for CP/M-Plus computers,
NZCOM for CP/M-2.2 computers ($70 each)

e XBIOS: the banked-BIOS Z-System for SB180 computers at a new, lower price ($50)
o PCED - the closest thing to Z-System ARUNZ, and LSH under MS-DOS ($50)

o DSD: Dynamic Screen Debugger, the fabulous full-screen debugger and simulator,
at an incredible new price, down from $130 ($50)

o ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

e Plu*Perfect Systems

— Backgrounder 1: CP/M-2.2 multitasker ($75)

- ZSDOS/ZDDOS: date-stamping DOS ($75, $60 for ZRDOS owners, $10 for
Programmer’s Manual)

— DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

— JetFind: super fast, extemely flexible regular-expression text file scanner ($50)
e ZMATE: macro text editor and customizable wordprocessor ($50)
e BDS C -~ including special Z-System version ($90)
e Turbo Pascal — with new loose-leaf manual ($60)

e ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
(850 with documentation on disk, $70 with printed manual)

e SLR Systems (The Ultimate Assembly Language Tools)

— 780 assemblers using Zilog (Z80OASM), Hitachi (SLR180), or Intel (SLRMAC)
mnemonics, and general-purpose linker SLRNK

— TPA-based ($50 each tool) or virtual-memory ($160 each tool)
o NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

- MEX-Plus: automated modem operation with scripts ($60)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or
MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

